w2

PROGRANNING
F/G 12/1

¥
‘
i
.
3
g
3
3
&
:
§
3
¥

]
)
g
[-Jd
=88
o1
Tu2a
Q
S
—p
32t
- N
lva-®
Saxs
N
ol e O
-y
mm
L]
(]
Ld
QEmQ
EOXX
g
-y
[T
-y
8

i
W
&
-~
2
=1
g
%
(™S
o
=1
«
~
=2
~
£
(=4
m

ab Vy8 0

AN AR

LT URFLRTT N)

R R N N R A TN LA\ S A LA LN U

]

v

TS

¢

et e

1

;!
i ;
, ;
! o~
3 %ﬁ |
v, =

!
W

122
1.8
I.Eb

Saati 3
L EFEFI, -

i I.~ 0

il =l S

"M"ht‘v r.a‘-“t‘d'c‘ PSSO ¥ gty Al kie gt o a4t 3ttt '\-rwv-\'rn v's\‘-u-\‘w- Al aty v st gt g

|3

3
OTiC FILE COPY s
,
k
v
\
)
®
~
\ A DIGITAL LOGIC SIMULATOR WITH :
CONCURRENT PROGRAMMING CONSIDERATIONS ' “
THESIS
wayne C. petoria i
captain, USA K
AFIT/GCS/ENG
®
DEPARTMENT OF THE AIR FORCE LY Gy :
AIR UNIVERSITY S
AIR FORCE INSTITUTE OF TECHNOLOGY .
— — ~
| >
Wrighi-Patterson Air Force Base, Ohio

J— :
i decument oS w—— R
raleass gnd saley W8 \
WIMM »

"\\'-'\'v‘s’.,'--»
L’Jl—f‘_fl{&."._‘-l: L" <

o

AFIT/GCS/ENG/87D-18

A DIGITAL LOGIC SIMULATOR WITH

CONCURRENT PROGRAMMING CONSIDERATIONS

THESIS

Wayne C. DeLoria
Captain, USA

AFIT/GCS/ENG/87D~-10

s
no '}\&',
=

Approved for public release;

distribution unlimited

et ST N
R I TR R A A N NN AT

AFIT/GCS/ENG/87D-18

A DIGITAL LOGIC SIMULATOR WITH CONCURRENT

PROGRAMMING CONSIDERATIONS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology,
Air University,
In Partial Fulfillment of the 1, 2?)
Requirements for the Degree of .

Master of Science in Computer Systems

"

l Accession For
NTIS GRA&I
DTIC TAB

i Unannounced i} H

i Justification

e Y TN
rLLlS

ISV—

By

_Distribution/

Avallablility Coces
Avail anJ/or'_

;Dist Special
!

December 1987 lA‘/

Wayne C. DelLoria

e E———

Captain, USA

Approved for public release; distribution unlimited

SRR LT AN A

Ll AP O K] RIS
LN AP T A A A A A A A LA

B AR A G S R AR N AR

Acknowledgments

Perhaps one of the greatest lessons learned from an
intensive period of research and study, such as this thesis
effort, is the realization that such undertakings can never
come to fruition without the assistance and understanding of
others. We all hope for self-sufficiency, but reality proves
that we are all gregarious. Many colleagues and friends were
helpful throughout this effort, but some really stand out as
lifesavers.

Of course, I could not have accomplished any amount of
success without the guidance and assistance of my advisor,
CPT N.J. Davis. The other members of my advisory committee
were equally important --CPT Bruce George, whose bright
disposition kept us all going, and CPT Wade Shaw, whose
inspiration was responsible for this whole thing. Dr. Frank
Brown, who oversaw the original version of the simulator,
also supplied some direction.

Various sections of this report would never have gone to
press were it not for classmates and colleagues. CPT Edward
Poore saved my life (and perhaps my sanity) with his undying
patience and indispensable knowledge of statistics and their

applications. LT Bill Hodges' intimate familiarity with the

iPSC Hypercube saved uncounted hours in the pursuit of many

s S e we
-".f&

LS
]

LS T
[
54

s ‘l}

o

b:;'
LTt

-
P »

A, '. l. l"
1:.1:.-:'-'..-:'1‘

O

?'y

3
AL

1
"“’V" "yt

.'{. ‘{.‘ o

;..‘1‘ .

elusive bugs which kept popping up in concurrent
applications.

My two partners in the development of the integrated N
digital design tool (IDIET)} were also instrumental in s

whatever success was realized by this project. Although they Y

(LY

were working toward different goals, without the productive

A

L@ B

PR
"'l

interaction with CPT Charles Adams and LT Steven Wagner, I

RAALC LN

might very well still be at the drawing board.

5 %

And last, but certainly not least, my most heartfelt

P
N

(s
r

thanks and love go out to my wife Sheryl, without whose

;"f“‘
=Y ;"v._l

v

support, and sometimes tearful understanding, this thesis

b Y
[\

would never have been completed.

%

)
R

g

st T T N T T Yo V]
/'./,’ L
NN g R

)/‘\."V/ »r

q

2 '. L% 7

S
RS
l.l"

.,
"
’

}.l.l
oy

S
Ps
.ﬁﬁ(

LWy

4

PRI,
P r
AL

iii ~-

.- ™
.

Wy v R R LRI L L,
- (P e e e . o e - A —\‘- N] (SRR A e "M T et
AT AR A e S NN A TR e (TR LR TR TR

P O T T o O O L S e S S P U G
RSNt NN, R N S N R AN B s

D .‘\
o

+ e
Ye
v
Table of Contents ;;
‘
Page ”ﬂ
'l
b Acknowledgments . « « ¢« ¢ ¢ ¢ ¢ o s s o o o o o o ii .
oY

LiSt O’ "“.Q’UZGS L] - . Vi »

l’-'

. C . g

List of Tables ¢ ¢ ¢ o o ¢ ¢ ¢ ¢ ¢« ¢ o o & viii &

b Abstract L L] . L] - L] L] L] L] L] * . L] L] L] L] L L] * - L ix "
A
CHAPTER 1 - THESIS OVERVIEW AND ORGANIZATION o o e 1 :
1.1 OVerview .« ¢ o« o ¢ o o o o o o o & 1 "

£ 1.2 Organization . . « ¢ ¢ ¢ o o o o« & 3 &
CHAPTER 2 - INTRODUCTION AND OBJECTIVES & 5 _Z
.

2.1 Introduction . . ¢ ¢ ¢ ¢ o o o o 5 iy

2.2 Research Objectives . . « « 190 v

> 2.3 Summary Y Y 12 Tl
CHAPTER 3 - LOGSIM - 13 \::-
.-"

3.1 Background . . . ¢ .+ ¢ « s o o o 13 z

3.2 LOGSIM248 Implementation 17 @

b
3.2.1 Overview . . . ¢ &+ « & o o & 17 ®
3.2.2 Data Structures . . « « o« .« o 18 iy
3.2.3 Operation« « .« . . 22 a
3
3.3 SUMMALY . « o ¢ 4 ¢ ¢ o o o o o . 24 -3

o
CHAPTER 4 - SOFTWARE DEVELOPMENT e o+ o & s o s o » 25

4.1 Re-engineering Overview 25 ~

4.2 Analysis - LOGSIM, version 5.5 ., . 25 g

4.3 Design - LOGSIM248 « .+ 31 Q
4.4 Coding - LOGSIM248 « « + 35 WY

4.5 IDIET Integration . . . « « « « o o 39

4.6 Testing and Debugging - LOGSIM248 . 49 -3

3
CHAPTER 5 - CONCURRENT LOGSIM . .+ « « & & « « « . . 43 N

A

.

S.1 OVEIVIew .« « o v o « « & o o « o . 43 2
5.2 Parallel Approach . . . « v « « « 46]
5.3 Implementation 47 wV
5.4 SUMMALY &« & « &« o o o o o s o o o 49 N

iv W
o
-~

“

. U 4 . - - - - . - » LK% -* . - ~ -] -~ C gl ~ "-",-_‘-‘-_-\I.‘~_\-.'n_‘. . TR T T G I ., .. - -

2a’ i s ogab st €ad gkt Sat dac .4 . . e A'aat ‘e gb “d%a A% Bva i adbs’ oY) N UNUR TR IR IO TR, L W 1, “ Ak ak b

P Page
CHAPTER 6 ~ DISCUSSION . ¢ &+ ¢ o o o o o o o o o o o 51
6.1 Comparing Performance - LOGSIM V5.5
Vs. LOGSIM248 L] - - . L] L] . L] - . L] L] L] 51
b 6.2 Concurrent LOGSIM Performance 56
6.3 Using LOGSIM248 Independently 59
6.4 LOGSIM248 IC Library Expansion 61
6.5 Future Directions ¢ ¢ o « o o & 62
Bibliography L] - . L] - * - o . . L] . L] L] * L] . L] * . L] 66
? _ Appendix A: Source Code - LOGSIM248 « 68
Appendix B: Data Flow Diagrams and Functional
Decomposition . . « ¢ ¢ ¢ ¢ o ¢ o« o s o & 130
k Appendix C: Statistical Information . . « ¢ ¢ o« o« « « & 148

Appendix D: Test Case Schematics and
Graphic Interface Images . . . « + o« o« o« & 162

Appendix E: LOGSIM248 Manual for Independent
Operation « ¢ « ¢ o ¢ &« & & o« o s o o o o 175

E.l Overview . . . e o o o s s e e o s o E
E.2 What Is LOGSIM248° e o s s e e o e o = E
E.3 Materials Required ¢« ¢« « E-~-
E.4 LOGSIM248 File Interface . . . « . « o E

E.4.1 Circuit Configuration Input
File - TEMP.CKT E-6
E.4.2 Output Specification

File - TEMP.DIS E-9
E.4.3 Input Data File - TEMP.IN . E-9
E.4.4 Input Port Label

File - TEMP.IND . 3 E‘lg

E.5 Invoking The Simulator E-11
E.6 Summary s ¢ o « o o o « o E-12
ANNEX A: LOGSIM248 TTL IC Library E-13
ANNEX A. Example Input/Output File

Structure . ., . . . ¢« ¢ . + + . . E-15

Vita L] - - . 3 3 . - . .

TSN Nty WS AT N w W v Lt PTG IS IS \\"'\n‘h} ‘ PR
Y A I L T s, " N0 00 'r " S '-{."' ALY ! * * e WL el Ly ’ " by * f‘(".‘"

..
N y
S
Pk g g

At dat

A,

R

PEPE

P
....a‘

SR A/

A i)

. .

[

P S I S

S s

R A L
20

’-.,‘.'l/‘.

27

PRy,

] .’.I

® ;,I.,-' Pl

P Rl
o ey

') R AR
\Jl\“.

.’J
-

Bl.

B2.

B3I

B4.

BS5.

B6 .

B7.

BS8.

B9.

Bl1@.

Bl1l.

B12,

B13,

Bl4.

BlS.

BT Sgr I R A B

B16.

Bl17.

Dl.

D2.

D3.

D4.

D5.

Dé6.

s .

-",

N a A

>

LOGSIM248 AQ

LOGSIM248 Al

List of Figures

3

Build Ckt Data Structure

Build Input Data Structure

Build Output Data Structure

Build OQutput Files

main{() . . .
buildckt (),
setpin() . .
connect () . .
findic() . .

catalog()

simulate () .

initout(), initinput()

operate() . .
addout () . .

fileout() . .

Schematic Diagram for
Inputs for BCD.CKT
Graphic Circuit Image
Binary Output Image for BCD.CKT
Waveform Output for BCD.CKT

Schematic Diagram for ADDER.CKT

AN
SN

LA

PR e S
T T

cktinit()

A I S
f_q‘-\f'.-d"\- o

. .
. .
» .
. 3
. .
. L]
) 3
. e

, buildinput{()

BCD.CKT

for BCD.CKT

“~

vi

-y

-".-4’ (4

.:-l' N

FOWU W, WO

R

WL WV W WU W

. . .
. . .
. . .
. . .
- . .
. . 3
L] . .
. . .
. . .
) . .
. . e
. . .
L3 . .
. 3 .
. .)
. .)
. . .
. .)
. . .
. . .
. - .
. - .
. - .

Page
B-1

PR R A
Al G

PP RXNAA

..
oy on Ay
s
-" o

[

o ,...'- -
s)y w.

e
1 4

N a4 Bvogta 4% 8% €32 4's %2 0'm 4’8 0% 8" NN TN AN R R AT Y v A A T O TN T O R O TR YWYy B 800 a8 Vol Wob b

W

D
*
%
| Page ?
» D7. Graphic Circuit Image for ADDER.CKT . . +« « « « «. . D=5 A
| D8. 1Inputs £or ADDER.CKT . . + « « « « « « o o « « . . D=5 Y,
g D9. Binary Output Image for ADDER.,CKT D-6 :é
L D10. Waveform Output Image for ADDER.CKT D=6 X
Dll. Schematic Diagram for BCR3S.CKT D=7 ’:
Dl12. Graphic Circuit Image for BRC3S.CKT D-8 :%
t D13. Binary Output for BRC3S.CKT . . ¢« + ¢ « « « « « -« « D=9 V
Dl4. Waveform Output for BRC3S.CKT . + « « + « o « « . . D=9 G
D15. Schematic Diagram for DECODER.CKT« « D-18 ;
k Dl16. Graphic Circuit Image for DECODER.CKT D-11 ;
D17. Inputs for DECODER.CKT . . &« « + ¢« « « o« o« o« « « « D-11 3
D18. Binary Output for DECODER.CKT . . . ¢« « ¢« « o« « o . D-12 E
D19. Waveform Output for DECODER.CKT . . . « « « . « « . D-12 ;:
El. ©LOGSIM248 TTL IC Library « ¢« « « « « E-A-1 z;
E2. Schematic For TEMP.CKT - Binary Coded Decimal E:
Encoder E-B-2 Y
E3. Circuit Configuration Input File - TEMP.CKT . . . E-B-2 :;
E4. Output Monitor File - TEMP.DIS . . &+ « « « « . . E=B-=2 i'.:
E5. 1Input Data File - TEMP.IN « « « « . « E-B-2 ?,
E6. Input Port Label FIle . . . + &+ ¢ ¢« ¢« o « « o« +» o E-B-2 D
E7. Binary Output File - TEMP.QUT « . « 4« « . E-B-3 L

E8. Waveform Output File - TEMP.WAV E-B-3

List of Tables

1. Data File Formats . . ¢« « o &+ o o o « o o =
2. File Format Codes . . o « ¢ o o o o o o o &
3. Simulation Run Time Comparison

) 4. Mean Run Time Comparison for Concurrent
Implementation . . ¢« ¢ ¢ « o o « « o o o o

El. Data File FOrmats . . « « o o s o s o s o

E2. File Format Codes . . ¢ o o« o o o s o o o o

viii

e " 4 ¥ ¥ Cautal -"~ .-'\' » 'l‘-
e S R W e LN

Ca

Page
21

21

55

PR N S PR Vel gy
PRI AL AN A

OO,

VA
v’

A _x_&_ 8 a_8_a_=a
PO
I a s

1

Ty
B

”

Y

JRTLT

»

u..--
{ihﬂ};?{.

,l
e

-
» ,..

s
a

e
e
ALY

:
-

[i)
.
xS

«

0

L 'y
[
s .

Py

% 'Y'r'r'y'r'\':

a el
2@ £%N A

PeLrr LA L
f‘l'.."lll-l'l
L L0/

1
A
@

fﬁ

ol

AR N
:I."-Ic'.‘.

<,
o

Abstract

The digital logic simulator, LOGSIM248, a re-engineered
version of LOGSIM, version 5.5, has been implemented as a
component of the digital design environment, IDIET
(Integrated DIgital Engineering Tool). This new design
expands the capabilities of the older version by improving
run time performance, maintainability, and compatibility.
Written in the C programming language, LOGSIM248 boasts
looser coupling between functional modules while exhibiting
greater functional cohesion within these modules. As an
integral part of IDIET, the simulator overcomes difficulties
created by the complicated user interface of earlier
versions.

With greater run time performance as a goal, this new
simulator was studied and adapted to produce a concurrent
implementation. Here, several roadblocks were encountered
which essentially showed this algorithm and data structure
implementation to be difficult to "parallelize" at best. Due
to communication constraints on the host computer, data
structures used to simulate circuits caused large delays due

to the requirment to disassemble and re-assemble them at the

ix

AT AT AT AT A AT AT AT AT A LTt Lt et e e e
AN N A AN AT AT NSO TR P

M, C >
PRGN

v =

o

,‘l

‘:I

SN

P

PPN

A v lns
RCAX

N

h e TN

5
-

hY

b TR

W

-
g

Uoat, e

A

various processing nodes. This program handicap coupled with
communication transmission delays between processors resulted
in time complexity problems.

Essentially a software engineering project, the re-design
of LOGSIM, version 5.5, was necessitated by various
shortcomings associated with the older version. The new
implementation conforms to the proposed ANSI standard for the
C programming language by utilizing only standard library
functions and source code which complies with the original
Kernighan and Ritchie model. This re-hosting has improved

system portability allowing LOGSIM248 to run on all MS/DOS

micro-computers available to the designer.

N

.
AL TL RN SR L N N N
R PR TR TR N R R . L "L VN L Oy

'\J'-f':.ﬂ"’ "i.

s

Ry A
4

P N g
A'
o A

y

.~
z

£} - N .-. -.' "‘ ..- '.- o
LR T Y AN
%%t Hh R

L,

LRI A SN
a4 N

[

Py
el

v Y¥_Aa
"J‘" |

AP R
. P
» Iv.l.& ,f{ y

%- " .I ?

» \ + 7
¢

Y

Y
"l

s

-

%@
!

e
Y4 et
a e A

.
- -
el N

A DIGITAL LOGIC SIMULATOR WITH CONCURRENT
PROGRAMMING CONSIDERATIONS

CHAPTER 1 - THESIS OVERVIEW AND
ORGANIZATION

l.1 Overview

Recently, a great deal of attention has been directed
toward methods which enhance efforts to design and build
efficient and functional digital circuits with minimum cost
and maximum performance. The primary products resulting from
these efforts are a plethora of computer aided design (CAD)
tools appearing on today's computer software market. These
tools aid the user in circuit design, circuit board layout,
and, in some cases, circuit simulation. Although not all CAD
tools include simulation as a part of their working
environment, simulation of digital circuits is an integral
part of the design process and should be considered when
building such tools.

In this thesis effort, the simulation of digital
circuits is explored with the production of a logic simulator
as a functional by-product. This study improves on an
existing simulator called LOGSIM which was developed at the
University of Kentucky and enhanced by students at the Air

Force Institute of Technology (l1). This design tool

.*' » ‘ . 'v~’ - \‘\.“\'I\\‘I"‘-x".“.l’l .“I.‘h~".'|"‘ ‘.' \.'. a1 ™S e » '.'.“'l"".'l
A LT RN o B M P 02 h*’%kﬂf**" MPTRRS ASAES Shiyy

s
.

T R I .
L

;o
/).'(

I

PPy '.‘.:.\l

L]
LA

L4

A
25

Tt .(’.--'. L)

NN Y
»

LAY
{ .

R
P
%

R

NS

ls:

L
/s

ﬁ

WUSNNS
’.l{~{"". 2,
fALS

b“(

A Y
g
(JAAy

(.
.
»

Y
SS
[RERC AN

&

v
o

- v
.\ o\
.

\‘.. .'_ .

L]
-
0

¢

¥

l.l
sla's

LN
AR
o

ety
\ L]
Pttt

A

Pg Iﬁt’

>
sl

2

|
gl
-

simulates digital circuit designs at the integrated circuit

4 (IC) level, allowing chip and pin level circuit descriptions
to be tested for functionality and performance. Various
problem areas were still present within the enhanced version

J produced at AFIT - particularly simulation run time for large
circuit designs, and software engineering inadequacies which
could hamper maintenance and future upgrades.

P This thesis effort centers around two main areas of

! investigation., First, LOGSIM is re-engineered for inclusion
as an integral part of a digital design tool which offers a
graphic user interface, a circuit connectivity expert system,
and the logic simulator. Secondly, methods are explored to
re-host LOGSIM on a parallel processing computer in an effort
to realize faster simulation run times.

The first part of this effort has been accomplished with
the associated efforts of two other thesis projects. The
first of these is the design and implementation of a graphic
user interface which provides the user with a pictorial
representation of the circuit design (2). The second project
employs an expert system which studies the circuit design and
reports problems in IC inter-connectivity, missing or
improper connections, and possible oscillation/race
conditions (3). All three of these projects have been
integrated to produce a comprehensive digital design tool
which is expected to be employed in the academic arena.

The second part of this thesis deals with a concurrent

construction of the simulator to enhance run time

~
|...l
e
=
.
,;
A
E
-
a

~
L J

1

. W
-\'-‘
A L b N S S S

et VA ‘2 5 A's A i ial dy o 8 o't a'R a‘s a'h 4’4 2% 2% &'t o' B 28 4% AV4a%D %R a% SE 2V 2?2 2% 2% 2 2B a%h 2% 2’ b a*

b performance. A parallel model has been engineered and
compiled with some improvements noted and directions for ?
future efforts realized. This part of the project utilized E
® the simulator developed for the integrated effort and .
exploited the natural parallelism contained therein to

develop a "first-cut" compilation for the initial analysis. \

1.2 Organization

TR ATY

The remainder of this thesis report provides a detailed

PR

review of all implementation efforts and analysis of results
for those goals outlined in the previous section. It is
® followed by five appendices which contain supporting data
referenced throughout the report. ~
Chapter 2 contains the thesis introduction and presents)
® an overview of the research goals toward which this project)
is aimed. 1In Chapter 3, early work with LOGSIM is discussed,
problem areas identified, and re-engineering efforts as :
) related to the integrated design tool implementation
discussed. Chapter 4 contains results of work performed
towards meeting the requirements of the digital design tool.
L Methods are discussed and results presented. Chapter 5
discusses the parallel implementation, method of attack, and
comparative results., Finally, Chapter 6 offers a discussion

4 of the effort as a whole, lessons learned, and resulting

@5,

contributions to the computing arena.

£

N

- - - » A - - - - - - -
DL A I A A X 4

‘ aAppendix A contains a complete listing of the source code

for LOGSIM248, the simulator implemented for this project.
Appendix B is comprised of all data flow and functional

P decomposition block diagrams used during the design phase of
the project. Statistical information which compares an older
version of the simulator to the new version is contained in

» Appendix C. Test case documentation is contained in Appendix

D. A manual for independent use of the new simulator is

included as Appendix E.

-
N

Pl

vy
"‘.r“ﬂ'lﬁ'\

." l“ ."‘ :. %

P AV o *
W 'lq PY }‘-ﬁ_n .

s

PN

MR T T N PR T T T R SR T L S L L
. »" o K '\\‘__.) ‘I =0 ¥ o) .-\.n “-) ‘.-\ FOLX 'A'

A LV A T D O R A R i A A A A

1 =z 4 taf Y ¥ & * 4 4 ¢ S \ M N < g J g U " ¢, \ VWY Va' aba" " atat ¢ - U * et * U J & * U 0

CHAPTER 2 - INTRODUCTION AND OBJECTIVES

2.1 Introduction

The development process for any end item is most
effective when the item produced performs those functions
described by the applicable requirements while conserving
resources such as time, money, and materials. Design
engineers are successful during the research phase of product
development when functional prototypes perform in accordance
with requirements. Productive engineering practices must be
employed during all phases of the development cycle in order
to satisfy these goals.

It would be most effective to build prototypes which are
already known to function properly. This way, only those
resources necessary to build the minimum number of required
prototypes will be expended and delays or cost overruns due
to extended research can be avoided. Trial and error methods
not only waste time, but are expensive and may expend costly
and scarce materials.

Computer simulation of functional end items is a method
through which engineers may confirm or expand the operational
capabilities of the end product without first building
expensive prototypes. Simulators can be used for fault
isolation and detection, optimization of design, and

confirmation of component interaction in complex designs.

5

Eanadil i

A.
5,
5e .

c
|
.
ol

"y
&

l’l‘ Al
)

...}.‘_
ATt

LR

o

.
x

-_,\,1.1 .t
L)
b LY S

5
v,

P,
L)

=
ket

ARL g

oy
_l' c'_a -y

t

AR
@ *f.'.] 'r:r “r" a

AR AR AP
-~ _-'f'{_'f."z-

l\’
L ¢

LI

@

r S 4t

A 4 %
f'f

s e e e
-‘c)‘r ')

v

Sy

D

Pl -

.
¥
01
RS
After simulation results have shown that the product performs :?E
in accordance with requirements, the prototype may be built ‘:
with greater assurance of functional success (4:118). E%
One research area where simulation is most appropriate Eé
is in digital circuit design. Here, especially for large, -
complicated circuits, the design engineer could spend a great fgl
deal of time debugging physical prototypes without the aid of ;E
il
’ computer simulation. ﬂ,
Research and academic environments are two areas where E?
simulations of basic digital designs would aid in the E;
) development process. The effects of simulation tools in the _j?
iy
research environment was noted earlier in this section. ;E|
In the academic world, materials are a precious iﬁ‘
’ commodity and simulations which guarantee the proper ;;O
functioning of digital circuits prior to building prototypes S;f
would be beneficial. Additionally, laboratory resources SE.
(space, time, etc.) are difficult to schedule on most ;:,
campuses. The time/space required for building and testing :ﬁg
digital circuits can be lessened by using simulation :;:
) techniques prior to prototype construction. This would free ;;é
crowded laboratories and allow greater flexibility in ;i
academic scheduling practices. E?l
, Effective digital circuit simulation tools should be ?’
composed of three distinct sub-functions. The first is the ?}
-
user interface. Here the user describes the circuit elements E$~
) and interconnections. The input streams, output :;
specifications and circuit layout may also be described. ﬁ?
6 N
TN
N
B R N e T e T e B N e g N Y P T N T S NN

‘.')I -

Graphical representation of the circuit is a helpful aid for

future conversion to physical prototypes and also allows the
user a pictorial view of the circuit. This view can aid in
circuit debugging and may later be included as a integral

part of a larger circuit.

The second area to be considered in a digital design
simulation tool is assuring that the input circuit is correct
and consistent., Such problems as input pin to output pin
connections, ground to electrical high, disconnected power,
and improper fan-out are examples of errors in the design
which must be isolated before proper simulation can take
place. A routine which checks the circuit design for these
problems should be incorporated into the simulation tool to
insure proper functionality. Debugging a design prior to
simulation allows the user to better understand simulation
results. Incorrect or unexpected results may stem from two
areas. The circuit may be incorrectly designed, or a
connection error may have been made during the construction
of the graphic representation of the circuit. The user can
be alerted to many design errors through the use of such a
connectivity checker, giving a greater assurance of circuit

correctness.

Finally, the heart of the design tool is that routine
(or group of routines) which actually performs the functional

simulation of the circuit. Using the circuit design, input

AR AL TS) A B P BT R AN AR IS N A AL A TS O S IS \\..'-\‘.‘»".',‘.\'
|.... -. ". ¢J‘ ’-'. f f" * f\- " '-\ ﬂ"“ \\‘ '.\" v \. 3\ ‘r.‘. ...J. ' N “ v

EYNRE
Ic'.fn‘(‘[l

AN

A

' '.‘.‘ . £

SR
R
(PPN

.
'.l

4

{?¥¥S_

-
-

’
"n

stream, and output specifications, this routine may perform

either logic or timing (or both) simulations by following the
circuit path from inputs to outputs and returning output
values for a designated series of clock cycles. Logic
simulators are used to verify the functioning of a given
circuit while timing simulators are used to confirm time
relationships between various signals within the circuit.

Various constraints must be realized before designing and
implementing a digital design simulation tool. The first and
perhaps foremost consideration should be the target
audience. A large number of Computer Aided Design (CAD)
tools presently exist --each configured for a specific
purpose. Tools used to simulate simple circuits designed in
an academic setting, by nature of their requirements, differ
from those used to simulate Very Large Scale Integration
(VLSI) designs used in complex production environments.

The host computer, i.e., the computer on which the
simulation tool will be run, is also a major consideration.
The screen size, resolution, and underlying graphics hardware
affect the graphical representation created by the user
interface. The simulation designer must be concerned with
expected circuit size, layout, and complexity. Circuit
designs may be limited in these areas due to screen, memory,
and processing speed constraints. Computer memory could
limit circuit size and the necessity to utilize large,
complicated, data structures, while the processing speed of

the computer could affect the simulator's ability to produce

A :. ny \}“f\i‘?}-'.';.:‘:;{_:{"-.‘ K . ,’\“.." "y ‘d’.-f:l .

Lt . AT RS
LR RIVENE L A Sl Nl i A N o e N

L
‘e \‘-‘ -

oF Jhav BN SN I

‘l\
l.l'l," .

oy &

Dl ah 0, W NSy,

results in an acceptable time period. Large complicated

designs may be impractical to run on small, slow machines.

The user must have at his disposal a wide range of
electrical and/or digital components to use in designing
circuits. How these components are represented within the
simulation program is a major consideration for the
programmer. Hardcoded representations of component
descriptions and/or operation may improve the speed of the
simulation but hamper easy addition of new components to the
simulators library. Component libraries stored on disk in
retrievable data base format may slow the simulation but are
easily updated and may be used universally by all modules of
the simulation tool.

Logic simulations of circuits with only a few components
may produce results using sequential algorithms relatively
quickly. However, the combinatorial explosion apparent in
simulations of circuits employing a large number of
integrated circuit (IC) packages or electronic components may
make sequential simulation routines impractical. Parallel
processing computers now being introduced into the computing
community may hold the solution to this problem of the Von
Neuman "bottleneck."

Methods by which simulation routines are "parallelized"
is a research area gaining a great deal of attention,.
Because digital circuits are inherently parallel in their
design it would seem apparent that simulators which

capitalize on this parallelism must improve performance and

AL A T] LY e “‘:‘d""*“'f‘ ‘l‘.:'.:v '.'.")’-':- \f- T e Y
, 49, a0 . \ “ o

B

al

DR I R) AP T I D I Ve S T S IR e e
BN A ORI Jaﬂ\jtj\(_{ -, .~{~¢~a L4

.

SAAS

'y “r »
PR

e ow e
I)
.

Ko™

I T
a2t

XY’

"i.". ;

R
2@ 2

e

”

¢ 5 -
‘- ‘.
@

" \"l,' o

l"-

‘v

.
’

A A

N ey e Y d

Y@ 10

(RAER

KRy Jo]
N PO L X

Py
LA 4

P\

T T I I e I T I T N N I I T T T T T R TR TR T T et S It IRV IR Yot S) TSP
N A A A S T S R G GO SR N CL AR e bk Ty \-. "'\.\ -.': oS LY \\"\ \" SNV AT

produce results more quickly. The question gaining

researcher's attention deals with the most efficient and

practica! method to employ in working towards this end.

2,2 Research Objectives

This thesis effort is divided into two separate, but
related, objectives. The first objective is the re-
engineering and re-design of an existing digital logic
simulator for inclusion into an integrated design tool which
combines the three sub-functions referred to earlier -- the
user interface, the circuit connectivity checker, and the
circuit simulator. The user interface and connectivity
checker are being implemented through associated thesis
efforts. The user interface is being designed as a graphic
oriented interface employing the EGA graphics standard (2).
The connectivity checker (3) is being designed as an expert
system which utilizes Micro Data Base System's GURU expert
system tool (5).

The host computer for this integrated design tool (and
ultimately for the logic simulator) is an Intel 88286 based
Zenith 248 micro-computer utilizing the MS/DOS operating
system. However, it is desirable to insure the functionality
of both the simulator and the entire design tool on as many
compatible (MS/DOS) computers as possible.

The digital design tool is envisioned to be used primarily

in an academic environment to design, test, and simulate

19

.

e "m
St

ALy

F X A

Sl

v

RARANGI

v w n

"

d

2671@ -

A .(.’(

D
i I

b TR R %)

basic digital circuit designs which employ TTL IC packages.

This tool will allow the student to work a level of
abstraction higher than that of most digital design tools.
Other available digital CAD systems usually require design
work at the gate level. 1In this project the designer will
work with those TTL components commonly found in digital
design laboratories. Specifically, the 7480 family of IC
packages is used as an initial library of available circuit
components. A modest collection of 32 separate packages was
identified for the initial IC library. This insured that
designs of a general nature could be simulated by the tool
while permitting the designers more time to develop system
capabilities and optimize the algorithms involved.

The user interface is being implemented as a graphic
oriented, menu driven system through which the user creates a
pictorial representation of the circuit design using IC
graphic icons and interconnecting lines. The design is
produced interactively with the aid of a mouse and keyboard
input to system produced prompts. After completing the
design, the user may invoke either the connectivity checker
or the logic simulator through one of the interactive menu:
(2).

The connectivity checker consists of an expert system
which inspects subject circuits for possible illegal ot
erroneous connections. Connections which are suspect but not
necessarily illegal are annotated and presented to the user

as 'questionable.' Absent connections are labeled as

11

PR R LT R R LTI AL UL R e T UL R T v . AN

- .l"_.-' '-.. S - - a . LA LI -~ . .t et * W te o .'.:-.-.'. 0 "'.. " “. e o DN *\ \"\‘-\“\.‘
s iy Wy VS S P p ey TR VT P vy Uy ST e v U Y L L SR O A S GAN A R

® o b g 49 8'r 02 8% 3% 200 4%, 0% a0, gl 'atl t, ol dod dog b0k a'é.8 ¢ 8" o n" "6 04 a'A a0 VA 208 uda ot ata alat et alntate? #a°ta® gct Aot g0t gat ¢ XN ot TN YNV

l"]
R
o
\
| 'missing.' The results of both this effort and the simulator ot
’ are presented to the user on separate screens. This expert |
“~
s
system and the logic simulator have been designed to function gj
]
independently or as an inclusion to the integrated design ;:
’ t Qo0 1 (3) . - 4
‘r
o
. %
2
P
The second objective of this thesis deals with)
NG
{ exploration into methods by which this re-designed simulation ‘{.
¢
)
program may be "parallelized" in order to improve run time ﬁ-
a
N
performance. The host computer for this effort is a 32 node :}
’ -
g)
q Intel iPSC hypercube parallel processor in which all or D
"
groups of the 32 processors may be used during simulation. }-
“n
73
o
2.3 Summary
>3
-3
<
Simulation of digital circuits is not a new venture. ;:‘
X
Many CAD systems exist for the design and simulation of)
oo
digital circuits. Academicians and researchers are :;
e
-
continuously exploring methods to improve digital design and A
~
“a Y
shorten the development cycle. This thesis effort provides a ®
S
digital logic simulator as part of an integrated design tool 9
which will aid design students in first year college design :f
.:\
courses. The design tool will incorporate three functional ®
3
systems -- a graphic user interface, connectivity checker, o
'I
S
Ld
and logic simulator. These three sub-systems provide the :a
.'.# 3
user with a robust tool which allows the user to produce)

s
.

\l

correct, functional circuits prior to prototype development. 5-

\':

\‘."

~%

12 °

R A LN IR R R A R L I T S . . o B B o ._:’.'
P P el ,.'- AL ,"_./-,,- e Wy LR 4'_. e a AT A LT AL T e .. s .
YRR SR N N R RS R NN LSNP SASEIAREA R e S

CHAPTER 3 - LOGSIM

3.1 Background

LOGSIM, version 5.5 (6), is a digital design logic
simulation program which has been used in the design of
simple circuits employing a very limited library of

integrated circuit (IC) packages. LOGSIM is unique in that

all simulations are performed on circuit designs represented

at the IC level. This approach differs from most digital
logic simulators which perform simulations of circuits
represented at the gate level. This higher level of
abstraction allows the user to visualize circuit layout,
economize on pin and chip count, and become familiar with
commercially available IC packages.

The original program was created at the University of
Kentucky by Samuel A, Smith, under the auspices of Frank M.
Brown, PhD. This program, though functional, was poorly
documented, confusing to use, and difficult to maintain.
"The code is an excellent example of a very clever program
that was obviously difficult to write but it is equally
difficult to read. The original code had only 138 comments
out of approximately 2888 lines of code (2:2)." 1t was
implemented in Sheffield Pascal and ini.ially hosted on a

PRIME S850 computer (2:2).

13

. L4 - - o o - -« -
IR R, ~
s .-.\.“‘-r\'.' N

-, -
..‘- e e e

41
b

LTI
Y ‘v"l e

N,
A
o
.
".f:'..o
%
In late 1985, CPT Mark C. Rowe from the Air Force o
Y
Y
Institute of Technology, re-hosted LOGSIM onto a 1l6-bit ﬁ%;
>
otY
. S . -
microcomputer utilizing the MS/DOS operating system and onto Qf“
pHGY
the VAX 11/780 utilizing UNIX. He wrote these new versions _
o
in TURBCQ Pascal (7) for the microcomputer and Berkely Pascal OAS
L
ISR
(8) for the VAX, re-engineering the entire project. The end AN
‘ .\‘-
Ye's
result of CPT Rowe's effort is a more thoroughly documented .)
t.\
v I-\ LY
simulator which is markedly easier to use and maintain. This 3?3
N
re-engineered version of LOGSIM (version 5.5), although a '%:ﬁ
1~ ‘S *
usable tool, still contains many problem features making it [
e
unattractive to inexperienced users. :ﬁ;;,
.
("z-:‘ i
First, the user interface is very cumbersome, requiring <Qh:
&8
AN
the circuit designer to traverse a large number of menus to o
A
A
completely specify the circuit. For larger circuits, this }i:
Kb
. . : Nt
process must be interrupted to store sections of the design ek
R
Sy
on disk. Circuit connections are specified on a pin-by-pin - L)
NG
basis wherein the user is prompted by IC and pin number and .xf{
A_'.\-.
responds with the IC and pin number of the connected ::tz
1’ -
component. The user has no means of visualizing this and ®
must complete a detailed design by hand prior to simulation. an

Secondly, because of the manner in which pin-to-pin

connections are referenced within the program, the number of

IC's which may be included in any one circuit design is

e

limited to only 32 of the more basic packages. Specific

ar

Ay
‘(}l.
chip/pin relationships are represented by a five digit Y
N
. . . . P e
integer. This integer identifies the IC and pin number of RO
.\-.\'_,
. - -
SN
N\
¥
ASAS
14 ®
N
e e ey, e vy
SN \..',‘.'__.r._..-_\..'__.r_‘_.r\.:__.:\a\;\.-.'__.r__./-_...-_'.:\.,_r,_.-x.:\.r,,‘.:\J,_..",:.-\‘.:__-'._.:\s_'_.’_'_-.:_-'(_-:.:-'\'-‘.f-‘i;-'.'_-‘\'.‘:-'\-‘_‘-'__-'.;-‘._-'.'_- ;:.};'.‘;.‘ - '

the source. The first three positions of this integer
indicate the pin number while position four and five depict
the IC number. This representation allows the use of modulo
arithmetic and integer division to extract I1C and pin numbers
for inter-package connections. Because of the integer
overflow problem with integers greater than 32767, only 32
packages may be included in any one circuit design.

A third problem deals with the limited number of IC's
available for inclusion in the design. All IC's used in
design simulation within LOGSIM must be contained in the
present IC library of 32 standard TTL packages. If the
designer wishes to incorporate an IC into the circuit design
which is not present in this library, LOGSIM cannot be used.
No automated capability presently exists for the user to
specify parameters for a new IC or to add new IC's to the
existing library. Any additions to the library would have to
hardcoded into the program. The program must then be re-
compiled, forming a new executable version of the simulator.

Another problem lies in the area of proper connectivity.
Upon completion of the design and prior to running the
simulation, the circuit is not checked by the program for
design defects, such as incorrect or incompatible pin
connections, missing inputs/outputs, improper inputs/outputs,
etc.. If problems of this sort do exist, the simulation will
run with the erroneous circuit configuration, possibly
generating incorrect results. Because the simulation may run

to conclusion, the user has no way of knowing if the results

15

A SR N LN ~ N e

B P N N A e

Al

A

A R Tl g)
4

(A

‘3w e

»

RO LA,

e

5

2@

SN
2 '
o

’n"n. _".'. b .'."A 0

v

-""-,-‘0|.‘l‘
Pt

e A A A

. -'

N '_'. .‘..

l.‘ o ._’
e

.
2

g ‘o 'r‘"' Y .\

~r

o
PA

S .1’

*y
4%

[N
® 2l

° :.'

l'l.ﬂ.
P

Lyt

()

."I

g

A P eV . KIS I I) I)

are incorrect due to design defects or improper circuit

connections specified within LOGSIM.

If the circuit to be simulated has no external inputs,
(i.e., the only connections to IC inputs pins are power,
ground, and clock) LOGSIM, version 5.5, cannot ke used. At
least one input stream must be specified for every simulation
run, Additionally, it is not possible to monitor power,
ground, or clock for output display purposes. Only the
values at the IC pins and user supplied input values may be
monitored. If power, ground, or clock are connected to an
input pin and this pin is monitored, only zeros (logical low)
will be displayed for that pin. The actual values of these
pins are assumed by the attribute of the pin descriptor field
in the circuit node data structure. These descriptors are
bound during configuration of the circuit and remain static
for the duration of the simulation. This problem limits the
user to circuits which have external inputs and prevents the
user from displaying all results which may be required for
proper analysis of the circuit.

The current version of LOGSIM is a sequential program,
designed and written in TURBO Pascal and implemented on
MS/DOS (Intel 8086/8@88-based) compatible micro-computers.
Digital circuits, by nature of their construction, may
contain many sections which perform operations concurrently.
Large complicated designs, if forced to execute sequentially,
may require long periods of time to perform the desired

simulation and produce usable results. LOGSIM, version 5.5,

16

PR AT % AR o N T T I I R P i
O LA A SRy ._-(' -\-...-.-.._‘ L ,.~_‘{_J~- SR AT NN

4 v o

-~ v V¥ o

A%y Sy »Q

”' o et st .

PR
LN Yy

..--.
d

SLTIQ 2

L/

ANl

operates relatively quickly for small, simple designs which
utilize only a few IC's. However, as the size of the input
circuit grows, simulation time appears to increase
exponentially.

Finally, LOGSIM, version 5.5, does not run on all MS/DOS
compatible micro-computers. Because of memory constaints
inherent in the TURBO Pascal (version 3.8) compiler, overaly
files were required to allow the execution of the entire
simulator. The methods used to compile the implementation of
these overlay files cause segmentation errors in Intel 80286-
based computers. It is an expressed objective of this
project to re-host LOGSIM onto a Zenith 248 which, due to
these segmentation problem, does not support the present
version of LOGSIM. Re-engineering the simulator with this
and other design considerations will vastly enhance

capabilities and performance.

3.2 LOGSIM248 Implementation

3.2.1 Overview

LOGSIM248 is a digital design logic simulation program,
developed for this thesis effort, which is a new
implementation based on LOGSIM, version 5.5. The original
source code was written in the C programming language and
developed using the Borland International TURBO C integrated

development environment (9). TURBO C conforms to the

17

-'\-_ X L T S P S Ot

WU YU

‘. -

A%

P LA LARL

IR A

vy & »
LARAS

“v
.

AR
o

.

T
-l

#ll'f -

..?}‘

s
o)
-’

Pl
i

- .':"-.: ST .

Y

> >) BT U T e I R R i L N A T B O A IR S e it T T R TE T T TS et
e o e o T e e e e N S T e AT o o

I S I T BT T

VR U U UNUT VR U R PR US UR TR VAT Y FAN TR Y AN Y R vy O PR T AR A T YU RO oW

proposed ANSI standard for C compilers and also contains
additional function libraries which enhance it's
capabilities. LOGSIM248, however, does not incorporate any
TURBO C specific library functions. Portability of LOGSIM248
source code is, therefore, not compromised.

This simulation program may be run independently or as an
integral part of the larger digital design tool, IDIET
(Interactive DIgital Engineering Tool). 1If run
independently, all files normally created by IDIET's graphic
user interface must be created by the user as ASCII files.
Because LOGSIM248 performs no checking of input file
correctness, all files created as input for the simulator
must be formatted in accordance with predefined interface
specifications (see Appendix E). When run as an integral
part of IDIET, LOGSIM248 is invoked through the graphic user
interface. All input files are created by the user interface
prior to simulation run and are supplied to LOGSIM248

properly formatted.,

3.2.2 Data Structures

LOGSIM248 operates on three main data structures; the
circuit confiquration list, the input data list, and the
output display list. Each of these is implemented as a
circular linked list with a dummy header node. This

configuration is useful when complete list traversals are

J 3, §, U L,

“~

R SN T R A TN N NN N
R A R NS PR PP O AR IS

o

© 2

N

If.(‘ f., I‘l.

“-'\l\\
r,fJ'

required as the index is left pointing to the head of the

list after completion of the traversal.

The circuit configuration list consists of linked nodes,
each representing one IC package of the input circuit
design. These nodes are modeled after similar data
structures in LOGSIM, version 5.5, and contain fields for 1IC
type, IC number, pin types, initial and subsequent pin TTL
values, and pin-to-pin connection descriptors.

The input data list consists of nodes which correspond to
input source descriptions. These nodes contain two fields --
the input number and the input value of the current clocked
input from that source.

The output display list consists of nodes corresponding
to user requested output monitor points. Each node is
represented by a string of two parts. The first 32 elements
of the string consist of a description of the monitor point.
The remainder of the string consists of output values derived
from the simulation which correspond to the clocked input
values.

Four associated data files are required for proper
functioning of the simulation program. These files
communicate the circuit configuration, input data stream,
input port labels, and output monitor points to the

requesting LOGSIM248 modules (see Table 1).

(1) TEMP.CKT contains all connections required to

complete the circuit design.

19

lf“,“ I«. f. ' /‘-d'. -‘\f. w! " o ™ . <, -"..- . v \f' ERIhs \‘.\J : d.'l "-- :.'\:.-','-:,

PR
'ﬂ"&"n 5455 %

X
.

N) e

a

s

',. 2y

TS SR R AN
AR

.

et
N
O R & &

)
&

. s

ERCRY

1

»
2

Ps N

"’. A

ARRIUN
’ 2

]
[X A7

. “ e
' v
' 1 3

L

.‘:‘g"l

S

Ay A

130 V55

.l‘..'
4 [N ‘1‘55 Y

2z

,"..'c

i

(NN

(2) TEMP.IN contains input numbers and their
corresponding input streams.

(3) TEMP.IND contains the user supplied, two
character, input port labels used to identify corresponding
input streams.

(4) TEMP.DIS contains a listing of all user requested

monitor points to be used in constructing the output file.

LOGSIM248 creates two output data files. These files

contain simulation results in two separate formats:

(1) TEMP.OUT contains a description of the requested
monitor points in a usable format (different from that of
TEMP.DIS) followed by the corresponding output stream of ones
and zeros.

(2) TEMP.WAV is divided into two parts. The first is
a listing of the input ports (again in a usable format, with
user assigned port labels) followed by the input data
stream. The second part consists of the output monitor
points and associated data streams as described for TEMP.OUT
above. The data streams for this file, however, are made up

of graphic characters which give the waveform equivalent of

the binary data.

PN s
AUV
¥ . At

&
o

-y
‘.fn'

>

- -
t‘ l‘

LA)

.5.\
NS

. r
J‘\l
o

-

R ARG A A
S n.g. .‘ -0‘:')',‘" :.' elelals

Ta ey

4 ‘; ‘o

M R | d
M I A
ST ('.1..l'f1’-'

R

Al ¥

»
«

ol

R A AR
2 v 2
‘Pl

o PR

._.-"-.,.

Table 1. Data File Forsats
(see Table 2. for forsat codes)

temp.cit -- circuit input file
- foraat lgnnnttttttpp cosment:dnnntttttipp cossent)
exanple:
P00 power +5Vdc :T001 740014 power Vecc
tenp.dis - output sonitor file
- forsat: [dnnnttttttpp cossent:]
- exasples:
1001 740003 output gin L K '
1003 input # H
tesp.in - input data streas file

- format: [nnnstiiiiiiiit,..]

- example:
001:101010101010101£0101010101010

tensp.oat -~ binary cutput ¢ile
- forsat: CIC #nnn (SNnnnan) PIN #nn 1000...)
(Input nnn 1000...)
{Clock 1000...]
(Power 1000...1
[bround 1000,..]
- exasples:
IC & 1 (SN 7400) PIN 813 101101110011110000110011
Input 003 $10011000011100110001101
Clock :101010101010101010101010
Power s e
6round 100000000000000000000000
tenp.may - wavefors output file
- input streas description
format: [Input #nnn Fort cc ST |
- output stream description
forsat: [IC #nnn (SNnnnnn) FIN #nn LTS
{Input nnn T
[Clock LU
(Power LU
(Eround LU

- exasple:

lngut file contents:
nput #001 Part Al 1--0LER_SE _SR __fmm =

Output data streams:
IC & | (SN 7400) PIN #13 (-WLGER. . EE_
IC # 13 (SN74181) FIN 813 ;-EE..8 .-

Input 003 (R e w8
Clock -ALALAGRARAR
Power + SR
6round : -

Table 2. File Forsat Codes

codes: d = connector descriptor (1 character)
7L 1C

1 s input port
P : power {+5vdc)
6 : ground (Ovdc)
€ : clock
n = IC or input nusber (3 digits)
t = IC type {6 digits)
optional for input, power, ground, clock
P = pin nusber {2 digits)

optional for input, power, ground, clock
consent = optional 20 character cossent field
i = input value, logical value | or 0
0= outgut value, binary logical value { or 0
w = putput value, wavefors logical value | = ®
logical value 0 = -

3.2.3 Operation

LOGSIM248 first opens the circuit configuration file
(TEMP.CKT) and reads the circuit connection list one entry at
a time. Each entry represents a two ended connection. This
F may be pin-to-pin, input-to-pin, power-to-pin, etc.. Circuit
configuration nodes are initialized and added to the circuit
configuration list for each new IC number encountered.
Initialization of these nodes includes dynamic allocation of
storage for the node, linking of the node to the front of the
circuit configuration list, and assigning initial values to
r all fields of the node data structure. After this
initialization has been accomplished, connections are
annotated by assigning IC/pin numbers, power or ground
® indicators, or input port numbers to the appropriate field of
the node. 1If new IC numbers are encountered for the next
connection, only the connection field of the already existent
k IC nodes are updated.

The next step is to initialize the input data list by
creating a linked list header, opening the input data file
+' (TEMP.IN), and dynamically allocating storage for each input
node indicated by a input number and associated data stream

from the input data file. As each input node is created, the

input number corresponding to the next entry of the input

data file is assigned to the input number field of the node.

NN I

”
-’
» -
e
Y
» N
As the simulation progresses through the associated data
| streams the data field of the input node is updated for each
clock pulse until all data is exhausted.
Two coded functions are required for each IC type (i.e.,
SN7400, SN7402, etc.). The first of these functions is used
+' when initializing circuit configuration nodes. This function
contains initial values for certain fields of the data
structure. These include IC type, pin types, and some
S

initial pin values and connections. All fields not
initialized by this function are assumed general in nature
and are initialized by a general initialization function.
The second function required for each IC type deals with
the operation of the 1C. This function is used during the
simulation to equate output pin values to existing input
r values using functional descriptions obtained from TTL data
manuals. During each clock pulse of the simulation and

immediately following the assignment of all new input values,

the operation function related to each IC of the
configuration circuit list is called in turn and the new
values of the output pins assigned to the corresponding
fields of the appropriate circuit nodes. This is repeated
until two consecutive operations of the circuit produce the

same output values. At this point the clock can be advanced

b and the next data set evaluated., Failure to produce two

consecutive constant output pin value sets after a specified

b 23

L]
.
.
.
s

LN

L

.
:g
I‘
~
A

k

T Y ; Y A Y S N Y N T Bt TN - e e S :
' y ’ i - '] .'. tn A ~) (Y -, ‘-5 ' " -'H “w - " - - o™ . - ™ ~ a \‘_ > e W
DN, O, i R BTN e R T R G 0 L A Y G, O N B R N A IO AR

Ca’

“

Ny

L]

‘,

’.-

4

.

number of iterations causes termination of the simulation. rd

The user is notified that the circuit is in an oscillation . o8
‘h

N

condition and is presented with the clock pulse containing }:

the errant data set. Eh
s

The final function of the simulator is to produce the two &
output files discussed in section 3.2.2. After each set of ﬁ

input values (for a particular clock pulse) is simulated, and :,

prior to moving on to the next set, the circuit configuration E,

rod

list is searched for those pins identified in TEMP.DIS. ;:
[N

These are the pins which the user identified as monitor .
points for inclusion in the output files. After locating :E
these points the corresponding values are appended to the :i
»

appropriate output stream in the output display list. After Y
I'd

‘o

the last set of input values has been simulated, the output -

display list is used to create TEMP.OUT and TEMP.WAV. ;

L)

-3

-J.

3.3 Summary b
=

Although a usable tool, LOGSIM, version 5.5, was in need .

W

of a major overhaul. Problems in software design, .,
portability, and performance limited its' use and impaired e

1"

its' maintainability. LOGSIM248, as will be seen in the next Ny
chapters, has overcome these problems, and presents a more N

efficient and usable tool. Re-designed data structures and a ff

new data interface have allowed the integration of LOGSIM248

into a total digital design tool while improving =
U N
maintainability. o

bt

T B M T T T T R et e W T W W M A T W L W W Y N WV et
S S G S O R R NS SR S AR SLRLN £ CH A \.Js__s

B AP SR p et -
¥ SV I Be® W WS ¥ I et o N [B" Y o " S oo m =

CHAPTER 4 -~ SOFTWARE DEVELOPMENT

4.1 Re-engineering Overview

The re-engineering effort which resulted in the design
and implementation of LOGSIM248 proceeded in five distinct

phases;

(1) analysis of LOGSIM version 5.5

(2) design, LOGSIM248

(3) coding, LOGSIM248

(4) integration of LOGSIM248 into IDIET

(5) testing and debugging, LOGSIM248 and IDIET

4.2 Analysis - LOGSIM, version 5.5

The analysis of LOGSIM, version 5.5 was divided into two
separate parts. The first part consisted of a "hands-on"
approach which was necessary to become familiar with user
interaction and program performance. Several small digital
circuits were used to accomplish this objective. These
circuits consisted of one or two IC's which performed very

basic functions and are of no consequence here.

25

".'('I.' ‘.,

S . - N T e e - . -
.--'--..-_--..‘.--.. FU I S e I TR LTI T

J o . . <y » ’
A O . . - S - ~e"
IATANSILIY, .&.-.‘.‘.-.. .a}.c.. Jmﬂ‘i‘.e;'.e.,. R S TS N iy VUL \.L.q._.‘_,_;

U U U TN R YO U AU IR U W U U U R R A ad 4.0 L2 Ao d.g 4 0" Sh gt ath ath avh a¥a VR LB ha sl ata R’ abe' afatata’ At a1at ket et git gat gat pot ot 40 g

The second part of the analysis involved an in-depth
study of the simulation source code and accompanying
documents., This proved to be a time consuming effort due to
the length of the source code and those software engineering
shortcomings discussed in Chapter 3.

During the "hands-on” familiarization with LOGSIM,
version 5.5, most problems encountered pertained to "ease of
use." These problems included mastering the menu driven user
interface, visualizing the overall circuit layout, dealing
with input inadequacies, and interpreting output data. A

short discussion of each of these problems follows.

In order to build the circuit, specify input data and
output format, and run the simulation, the user is required
to navigate through a myriad of menus which offer options
pertaining to these operations. After spending some time
working with the program it becomes apparent that these menus
are related in a tree-like manner. Movement through the
menus consists of no more than moving up and down this tree.
Although it is easy to get lost, upward movement (i.e.,
repeatedly exiting the present menu) will eventually return
the user to the root where circuit manipulation and
simulation may be started again. After running a number of
simulations, the user should be able to learn this menu
mechanism well enough to accomplish his objective. However,
the primary audience envisioned for LOGSIM248 is the academic

(collegiate) arena. Here students will be expected to

IJ' 4'

P .
’% g ‘:"'{\

N

PadrIll
NS,

et .;'?.

e,

P
AR

.
ALY
-AAA.
»

AAANASN)

.- o ®
a
.
@ -

XA

AN Ay

.

b
AN J A
Y

LA
e« v g
¥ .
.

e
P

-’../ & ‘<'

"J

PR ST

" .i":'v‘,'l'l'l'i.

'.N'.’

o . ’ - " - . o
S o .f s /' e - . SRTI
e sia e e AR A e T e e e AT T T I T N T N N N e

G a0 ' Aty a0 gV et el At at abotatotali el at talatal 'al"al ‘et tal tat o at ataatotal. ¢, sat Vgl el 'a ‘ag a9 tab Vol LR

quickly master the various tools of the laboratory and may
not have the necessary time to become thoroughly familiar
with the complexities of this intricate menu system.

Another difficulty noted during the "hands-on" phase was
the inability to visualize the circuit during construction.
The user is first prompted for an IC package type and
identification number, after which, more prompts for all
connections to this package are presented, pin by pin. After
entering data for a particular chip, the user may start over
at the first pin of the present chip or request chip data
previously entered. Here he may either check or correct
circuit data. This accomplishes the objective of configuring
the circuit, but makes it difficult to visualize the circuit
as it is created. 1If the user were able to see a graphic
image of the circuit design as it was being created,
comparisons could be made directly to design support material
to insure correct entry of circuit data and to visualize IC
layout and pin orientation.

Simulation output also has a presentation problem. Aall
requested output data are presented in columnar fashion.

Each clocked output data set appears on consecutive rows in
the display, resembling a truth table. These data sets may
include input streams, output streams, and/or any other pin
values, all of which may be viewed at the same time for a
particular clock pulse.

For some circuit designs, the individual input/output

data streams are better viewed with the data presented from

N

'l ek

b e T T T
A A4 °

‘.‘_ N

ﬁ. .l 'I ﬁ. 5' .i-

P T T)
N Y e

~

.,A
.
SN

N .-."n_"l; . ..'.'."-v";

"

Attt vatat gt tal Vel Tl tat a o aY Tal el et Sat tan ral et ta el e tala alatala Aty gt o ata el atetat o ate e 70

left to right. This is especially true when performing
various waveform analyses. Some sort of waveform display
option would give the user the ability to see input/output
relationships in a different, and, perhaps, more usable
format.

It was during this phase of the analysis that circuit
input limitations were discovered. After designing a three
stage binary ripple counter which only requires power,
ground, and clock values as input to the circuit, LOGSIM,
version 5.5, would not allow the simulation to proceed
because no external input streams had been supplied.
Additionally, the program provided no apparent means of
presenting power, ground, or clock values as part of the
output display. This problem, discussed in Chapter 3,
prevents the user from comparing output values with the
system supplied clock, and requires some sort of external
input even for those circuits which do not require it.

This "hands-on" phase of the LOGSIM, version 5.5
analysis showed the simulator to be a useful, but sometimes
confusing tool which presents simulation output in a manner
that could prove difficult to analyze by the less experienced

designer (i.e., first year design students).

The second part of the LOGSIM, version 5.5 analysis
consisted of the inspection and analysis of the source code

produced by Captain Rowe (6). Although some documentation

did exist, a great deal of time was required to organize,

&

PR

AR NRARRRY

Lot ¥ o I b o)
s‘—

"
X

. (',-‘ 3, :.' -_' AR ;

T

-
v

SN
AN

's{'\f‘/-'f.‘t‘ . %‘ 1" -I' 2"

@ f&{':'

-

IR

»
Yy

‘ LN
i .
"-
'l
} analyze and understand the various modules which comprised >,
| &
'
) the simulator program. >
i
The following are the wajor software engineering :?.
I(+
» 4
deficiencies discovered during this phase: Hﬁ
» ""
-5 g
(1) A 15 page report and 12 pages of block diagrams Ei
“
. , -
are all the design documentation that accompanies :(
>
N
) over 4,500 lines of code. Although each procedure s&
and function contains a header block listing a 'i’
s
-.":
small amount of information about the function of N
",
e
Y that procedure, little to no comments can be Y
’-
found in the code. -
(2) Some procedures contain as many as 580 lines. ;j
(3) Block indentation is inconsistent creating };
confusion in source code structure. E:'
':r"
(4) Global coupling is prolific throughout the ;:
Y
program. This type of coupling requires a large 3
o
N
amount of globally declared variables and wasted A
'-'f
memory space. f:
..:,
(5) Because TURBO Pascal, version 3.8, allows 4
®
executable files to occupy no more than 64 Kbytes :f
of storage (due to 16-bit addressing -
limitations), and because of the size of the -
®
simulation program, overlay files were needed to }i
N
allow the entire program to be compiled and run {ﬁ‘
within the 64 Kbyte limit. ~
. @
Y,
AN
o
I~
w -
29 Rk
)
o
rod
oA
\~~\ U _- R O A I e e R ATIRE T R T '-.-'.
* o o *\A 1 \‘.&A‘hn‘_&in‘i An'h‘)‘:l-h AAL_AA‘A ,.,...:JJ::P:‘ _A\"- j':‘.';:'.&" A

-
-
.
3
-
<
¢
-
d
4
-
‘g
3
-
-
¢
-
-
.
.
-
(3
-
-
-

N e S

A

: J

S

S

b Y.

Because of these deficiencies, maintenance, Xy

modifications, and/or upgrades to this source code would i

)

certainly be difficult. The need for re-engineering was R

>

+ apparent, in spite of the requirement to integrate a re- B!
engineered simulator into IDIET. Toward this end, all user :f

interface modules needed to be stripped from the existing 2

P code, data structures rebuilt to accommodate the IDIET ':
interface, all modules translated into the C programming 3‘

["n1

Te

language, and a great deal of documentation supplied. :i

h The C programming language was chosen for a number of b
reasons. The user interface to IDIET is also written in C in Eﬂ

J

Y

order to use the underlying graphics package. For uniformity }“

“

hY
k and future maintenance/upgrade reasons, C was also chosen for ﬁ‘
LOGSIM248. As stated earlier, the Pascal version of LOGSIM p

was not entirely compatible, i.e., this version was not ;f

: . 5

'S supported by Intel 80286 micro-computers (Zenith 248, [BM AT, a)
)

etc.). By using the C programming language (in particular ﬁ:

o ~

TURBO C) compatibility among more computers was expected. In s

o

P addition, the Intel iPSC Hypercube does not support any -
o

version of Pascal, but does support the C programming :j

language. 1In order to complete the concurrent version of I

P LOGSIM on this computer system, re-hosting the simulator in C £
was necessary. e
W

o
(W
o
)

| 4 e
o
N
'\ g

)

Y

)

\

30 .

P °
\:,

N}

W e . \(

x

I N OO AN AR
NN A e e

-

4.3 Design - LOGSIM248

LOGSIM248 easily decomposes into four distinct

functional areas:

(1) circuit configuration
(2) input data structure configuration
(3) circuit simulation

(4) output file construction.

LOGSIM248 has been designed with these four functional
areas as the initial decomposition. Four input files (see
section 3.2.2) are created by the user interface module of
IDIET and are used to communicate data between the user
interface and the simulator. These four files are the only
input or control structures required by LOGSIM248. Output
consists solely of two output data files. These two files
are supplied to the user interface for screen presentation.
Data flow diagrams and functional decomposition block
diagrams illustrating the design methodology for LOGSIM248
are contained in Appendix B. The data flow diagrams (SADT
diagrams) depict infcrmation flow and the transformations
that are applied as data moves from input to output (18:99).
These diagrams decompose the simulator into the various
activities which occur during program execution. The
functional decomposition block diagrams show the actual

decomposition used while writing the source code. Data flow

31

R PR I

LIPIC I I
et \-'\I‘\J".,-I'__I‘,-J\’- "

-
Ty 3

.
A

L]
Ty

ettt
ﬁ. » \-"s" r"u:'*ll

.f,,
[N ALY

> .
A

Y
KN

oA g
'L,

.
[}
2

LI I
1 ’{n v, ,. . "n 'l}
~ I Y]

N

2l a'a'ataatead At ab Aty g0 Al abaabe acs gV aca 4% (Ve B'a 8’ 0’84 acb’ 0 820" 0B Ba® B0 108 .0 R0 Ba® 0% 4.0 0.0 §o* b’ da 2~ A" ob,

diagrams help to visualize those transformations that input
data undergoes during program execution. These diagrams are

immediately translatable into the functional decomposition.

As discussed in Chapter 3, three data structures are the
primary objects used by the simulator. Each of these is a
circularly linked list configured with a dummy header node.
These data structures are used to store and maintain the
circuit configuration data, input data, and output data. The
linked lists used in LOGSIM248 differ from the corresponding

data structures used in LOGSIM, version 5.5, in three ways:

(1) All three list are circular. Resetting an
index to the beginning of the list is not required
for iterative processes that repeatedly traverse
the entire list. The index is properly positioned
at the beginning of the linked list after
completion of each iteration. LOGSIM, version 5.5,
uses nil terminated lists that required
re-initialization after each traversal. This may
not be time effective -- especially for those
procedures that must traverse the linked lists
repeatedly.

(2) LOGSIM, version 5.5, is designed to build an
input linked list early in the simulation which
contains the entire input stream for all inputs

specified by the user. This requires the use of a

32

¥ “~.7‘.u’~.‘l
N Ny

_-" W
\.“\.A\“.A-.':n

-

LI T I B% e R N

'.'-\‘5.\\'-\?-'. 5":"‘-fv‘x'-".

._“‘ .‘_.“.',. '.{& .

(L rPyyy

AR TN

AL A

= e
AN

LIRNAN

v

R I |
PN,
Ve

O'¢ 42 8% 0'a £%2 3% 14 2% &Y

N sy

PO A A P APl At N S SRR AR L L TR T R I TN T S O N G N U R TSP N
i A e A Y T s A s o N T R R o e R I T Tt

(3)

-

R R R R RA R A N L Ty I yUw U PO WL W W, VR RO oS

great deal of memory (especially for those
simulations which required large amounts of input
data) due to the manner in which TURBO Pascal
allocates dynamic memory. If the input data
streams are large, and the circuit configuration
linked list (already created) is also large,
internal memory could easily be exhausted before
all data structures are completed. 1If memory does
become exhausted, LOGSIM, version 5.5, contains a
routine which stores incomplete data structures on
disk. When the simulation is run, this incomplete
information must be swapped in and out of memory,
as needed. This system does work, however, it is
obvious that a time penalty for this file 1/0 will
be incurred.

LOGSIM248 uses a different strategy for input
data. As the simulation progresses only the data-
set required for the clock pulse currently being
simulated is stored in memory. This input data
linked list is updated with new data for each
clock pulse of the simulation. Here, less memory
is used and the traversal of the present input

data set linked list requires less time.
The output data list in LOGSIM248 is also a
linked list which contains the output monitoring

points (as specified for TEMP.DIS in Table 1)

33

" a® 02 0at aaf aot g.f 8.0 2.0 009

S

o N SN

-

o

N

]
l].-_

P
~:“- e

e

AN

»"l

»
RS -..
L) -

rS .\' ‘r"v & 'r_ﬁ .

.

&

SN :

‘.'l

B .
I T R T T

R

."r..rﬁll:(".' . .I‘

EA 4
‘l\'n‘i."f' .'l

.

@\

'y gt N APW WP LT LW LA LW LD DR U U LY U U U ORI A s ORI § VW U U U USRS URTUSTURT U U AT R LR UG U RPN alatal Al iat tad ‘ab el af val o ‘o

A

I g

o,

)

[4

o

followed by the output data stream. This data E:

’ stream is built one element at a time as the 2
simulation progresses through each clock pulse of tﬁ

-

the input data list. After the simulation is S!

‘ complete, the monitor points are reformatted (as A
shown for TEMP.OUT and TEMP.WAV in Table 1) and :;

the reformatted output points are written to both :;
b TEMP.WAV and TEMP.OUT followed by the output data :‘
stream (in waveform and binary format, ;?

respectively). ;:

3 LOGSIM, version 5.5, writes each output data ::
set to the requested I1/0 device (disk, screen, ﬂi

printer) as it is created. A large time penalty l?:

is incurred, especially when writing output data :}

to a disk, due to disk spin-up and seek time. f:

2

All coupling between functional modules has been 5i

improved. Most modules are simply data coupled. The problem ;i

N

of global (or common) coupling, discussed earlier has been j;

almost completely eradicated. Only three global variables o

are used, each of which is a pointer to the three data ??
structures explained above. These global variables are i

available for manipulation by any module in the program. iﬁ

Another problem of LOGSIM, version 5.5, noted above, is
the length of the procedures. Many of these procedures

exhibit cohesion problems. Too many functions are

34

LN A A A "o~ S
-

VAR AN

- - - - -« - - - - - - - - - - - - -
T L Syl S N . s
SO N M A TN A A A s

accomplished within one procedure making it difficult to
understand the purpose of each module. All of the functions
defined by the decomposition for LOGSIM248 are designed as
single-function modules. This functional form of cohesion
enhances understanding of each module and improves
maintainability.

These improvements in both coupling and cohesion are
evidenced in the functional decomposition illustrated in
Appendix B. Excepting the three global variables which are
used throughout the program to point to the three linked
lists, all data required for each module is passed when that
module is called. The arrows associated with links between
blocks illustrate both control (solid head arrows) and
informational data which is passed between functional
modules. This is indicative of good data coupling. As can
be seen, all modules present this form of coupling, or (in
the case of no passed data) no coupling at all, The
improvements in functional cohesion (i.e., each module
performs one function) is indicated by the module names, but

is better seen in the source code itself (Appendix Aa).

4.4 Coding -~ LOGSIM248

All source code for LOGSIM248 is contained in six
separate files (see Appendix A). These files can be directly
correlated to the decomposition referred to in the previous

section and are organized in a functionally cohesive manner.

35

« .‘ v ' AN e e e e s
J‘I\ _p\d‘\f\(._-f.f('-"J‘ \..’\.’. J'-f 8 AR s

\\\.\'\.‘\.\. ~. \ A N A R A TR

i~

«* .t’ .’ .’ .,.l

%%

,‘nl') ."-{‘n

% 4

-

N - ‘. a .".i ."-. ..-. <

?

. . B T TR ~
@ L

* €
a8 0
v Yy 1

7
y 4

B o

02 Nttt a0 v e a6 e 'R A et Yad Pl Pt bal daB 0ad tab. abe Ala Aba &2 b Atad’ e dve gla @'y gty ale Al gl ealooal bog toR g bad tok bod Mok Sd Sod'had s

.
oS
-’.‘
"-
4
g
. . . A . . N
] ~ logsim.h: This is a header file which contains all
constant declarations and data structure g
.
type declarations used in the program :g
A
) modules. p
~ simlib.c: This file contains low level functions used o
‘o
throughout the program to perform parsing, i?
¥ data type conversions, random number ph
K/
generation, etc.. e
.
- exec.c: This file contains the function main() and N

.
St

v
.y

all debugging functions. This file also

[

contains the error handler used throughout

the program.

. .".. _..'_.. .,..'.. _.'\

- makeckt.c: This file contains all functions associated

with the construction of the circuit :t
L

s

configuration linked list. Here the Z:
o

TEMP.CKT file is read, all circuit N
L

. . ' e
connections parsed from this file, and all f
;0

circuit information plus initial pin values T
i
fl 1
stored in the circuit configuration list. aht
- simio.c: This file contains those functions i
h\..
associated with the initialization and fu
-". (]
maintenance of all input and output data %
@

structures. Additionally, those functions 4
\-J \

used to construct the output files, -3
S

TEMP.OUT and TEMP.WAV, are contained in 3
®

this file. -
\.'

o

\::

~

36 ,
 J
o
s
AP s "f

o R e S M TR £ 0 o X e e T e

NP A - '-."l"-' R IR
PR "-."-".'.'- - "J:" N 2)

p
- srun.c: This file contains the heart of the
P simulator program. Here pin values of
those IC packages contained in the circuit
configuration linked list are updated for
P each clocked input data set, after which
each IC is "operated” to produce new output
values at the output pins. Oscillating
B circuit conditions are also detected here.
- configic.c: This file contains all chip configuration
functions and an executive function which
2 chooses the appropriate configuration

function. These functions are called by
the makeckt.c module upon initialization of
a new node in the circuit configquration
linked list. These nodes represent a
single IC package in the present circuit
design. After adding the node to the list,
each field of the structure is bound to
initial values for the corresponding IC by
functions in this file.

- opic.c: This file contains all those functions
required to operate the IC packages used in
the circuit configuration list. These
functions perform the appropriate boolean,
arithmetic, and other assorted TTL
operations for those IC's presently

contained in the simulator IC library.

37

[P R P N] Y W WY s N SR) e N e S I S e e e L T T e i e oo T N S
o A Tl W ARt s .-\4-, ORI s N S A N A N0

]
-

 y
Rt

R ARARA]

7y

“ g ‘.‘-';-"‘--) l"l"l - .,-

& v e

.‘.'s("’r \r ‘:_ .

I X4
A 5

P

¥ v
.

‘.1
B

sl a0

ORI
»

e 0 T ‘e

RPN Pt @ P SLGTRERI AR

All modules included in the above source code files
{with the exception of configic.c and opic.c) contain an
average of nine functional statements apiece. Because these
modules are functionally cohesive they are designed and coded
to perform one function. The modules used for IC
configuration and operation also perform a single function.
However, due to the requirement for functional completeness,

some of these are substantially longer.

Optimization of source code was attempted, wherever
possible. Register variables were used for counters and loop
indices to insure rapid incrementing. Increment and
decrement operators (++ and --), and pointer arithmetic were
used wherever possible to speed up these operations. To
insure greater maintainability, a great deal of
modularization was achieved. This was expected to detract
from the overall speed of operation due to the stacking
operations of local variables at each function call.
Statistical analysis of the comparative speed of LOGSIM248 to
LOGSIM, version 5.5, however, does not bear this out (see

section 6.1),

4.5 IDIET Integration

After successful compilation and limited testing of

LOGSIM248, integration of the simulator into the digital

design tool, IDIET (Integrated Digital Engineering Tool)

38

SN .

e

X
[

,").

A
P

N PN S PTIE I C ATAGNENT AT AT RN ST AP T
ﬁ?&m"*fﬂ_h.f*ar:a,u}m&m:}.ﬁh.um i:‘.r.:;".r_ J':'A_ .:O'.r"' W\I‘I\j\.\ TN _J’“‘.r".l

U i ' \J \ 3 \J U A J \J U g .o gt ¥ \J g N *, ‘A M y %) * R & pat \: W\ » VU \J

became the next goal. Here, not only were design and code
considerations important, but insuring a productive working
environment for all project designers became the dominant
theme. Prior to the start of the individual component
projects, the three project designers (graphic user
interface, connectivity checker expert system, and simulator
program designers) agreed on a set of specifications for all
interface requirements. Due to unforeseen difficulties
during each individual's design and coding phases, these
specifications sustained a small amount of modification.
Through good communication of modified requirements, all
interface changes were effected painlessly. The resulting
specifications are contained in the file formats for those
files listed in Table 1.

At this point it was decided that the production of a
waveform output (TEMP.WAV) would be more easily accomplished
by the simulation program and the required additions to
LOGSIM248 were incorporated into the source code file
containing all I/0 modules (simio.c). Additionally, due to
memory constraint problems with the host computer, it was not
possible for all three programs to remain resident at the
same time. Therefore, a small executive program was created
to run the graphic interface and simulation components

independently of the expert system.

39

Y YT

‘.‘:I e ;‘. , -‘: .‘c".-:’.-.‘ .-‘- oy ".-"- o ‘;,’.: '-'.-‘.".-:'Q -'.-:‘--.": e ."'.h'-.‘-' e e e e e e

LR PN RN

SR I I S BN Y
TN NN

ORI . g 908 o804’ KRR v| *2.2'8 a"h ath 2VA ath" aha*alfa ata ala* Aafla® Ba° i AV Rt At ot fiat g \J

4.6 Testing and Debugging - LOGSIM248

As with any software engineering project, finding test
cases which test the proper conditions and provide results
which can be used to evaluate program performance was a
difficult task. The test cases used were grouped into three
separate classes.

The first class consisted of circuit designs used during
the development phase of the project. These designs needed
to be simple enough so that time was not wasted implementing
them but large enough to insure some measure of proper
performance.

The second class of test cases consisted of those
circuit designs implemented during the testing phase of the
integrated design tool, IDIET. These cases consisted of
circuit designs which taxed the power of the simulator and
provided measurable performance indicators used for debugging
and performance enhancement.

The third class of test cases consists of circuit
designs created by those students of the Air Force Institute
of Technology chosen to field-test the digital design tool as
a whole. These circuit designs, along with the inexperience
of the users, were expected to provide a myriad of insights
into software design flaws for all aspect of the design tool.

Because of the combinatoric explosion involved with
testing circuits which use all IC's contained in the IC

library, more emphasis was placed on the execution of those

40

.ty e m
f.'l.'/.._’-"' ot e e e Ty

ol Tx -

B
b/ o

L4

A ST ST SN
WY TRAGRIINNT JOLNy

*

'.‘v I-"
Sy NNt

KRS ’
AU W

X

1
e
3

C
e,
".
-

.
e S0 N
v

8 e ..

CNEAD

s & 2 u_‘.",‘
LAQ .Y

LW % 3N 4
4
[4

2 «'w
"".‘All

-.'- et g
‘ "_{S. '.- .,u

” % % "
o

-
[]
-
- - "h
N
o

o B'e 8% 8% 4% 2%, 800 BFe Al ‘ot At at b st Al "al tatatal tat a0 Sak. 2l a0 "at ‘ot Al *a8.‘at YL tad 't "a8 %a8 'al tal Tab tal tat _'an et

modules involved in circuit configuration, input/output
specification, and simulation execution. All functional
modules (excepting those modules contained in configic.c and
opic.c) were completely tested using dummy stubs at each

stage of the coding phase.

Because of limitations of the graphic user interface,
circuits comprised of more than 10-12 IC packages are
difficult to create with IDIET. The size of the screen
prohibits larger circuits with many connections. As the
circuit grows, the screen takes on the appearance of a "rat's
nest" and becomes impossible to sort out connections for
debugging or modification. Subsequently, the four test cases
used during the IDIET testing phase contain 3-6 IC packages
with 20-75 connections between packages. This proved to be a
manageable circuit size through which productive program
debugging could be accomplished.

The four test cases used are (1) a binary coded decimal
encoder, (2) a two-bit full adder, (3) a three stage binary
ripple counter, and (4) a 3 by 8 decoder. Schematics and
graphic screen images of these circuits are contained in

Appendix D.

The Digital Circuit Design class of the Air Force
Institute of Technology was chosen to perform user "hands-on"

testing of IDIET. Their first assignment included the design

of a Binary Coded Decimal to Excess 13 encoder. All students

a0 o
-

t,l.'.'.\'v"n

NN Y g N o |

NP

e

~ v W
NP

L 2 S]

- e
e A Nt e
s o2 0 0

1Y
»

L
. l'-".

" -
]

.
A

a s
4

o
@ .

Sl
« &t

AR,

easily mastered the design tool, producing results which
either confirmed their designs or indicated circuit flaws,

No appreciable negative comments were made with regards to
LOGSIM248., More user testing is forthcoming and will be used

to upgrade and/or maintain the system.

AP X

P

e N
R

3
-

"

»
T

s 3

S Y N

l. R P

z
1

DA o'y
5, £

i

| el gt a0 gt a'h ath g ath a2 arh gnd a L gt han h R i h S0 G bab o bl bud tab tale aioral maly flg Aig dat ot alimt el fiadi e o 8 e AU AU URT ah Sl Sl ul Nl Sob 0 d Vod tat Boj i, K..')" N

&

RN
5 Ny

CHAPTER 5 - CONCURRENT LOGSIM

LS
4

ARE

5.1 Overview

i
e
Although applying concurrent processing techniques to a g}
} digital circuit simulator like LOGSIM248 would appear to be ?33
advantageous in producing improved performance, other factors E?
peculiar to this implementation need to be considered. The és
most practical way to produce LOGSIM248 test cases which can .,;
be verified as correct is to use the integrated design tool, ?i:
IDIET. After configuring and simulating a digital circuit, E&;
A
all relevant files (containing circuit configuration and e
o
input/output data) used during the simulation may be saved EES
for further study. These files contain all data required to 3&
recreate the circuit, provide input and output j;;
specifications, and simulate circuit performance (see Chapter E;
3). It would be impractical to compare the performance of Egz
the LOGSIM248, divorced from IDIET, to a "parallelized" ;&
version designed on a concurrent processor due to those ?i
\
difficulties involved with independent use of LOGSIM248 (see ﬁ:
Chapter 6). :\.
IDIET, however, presents some limitations which may 23:
devalue the implementation of a concurrent LOGSIM248, The It§‘
AN
most obvious of these limitations is the inability to produce :’
IS
circuits (using IDIET) large enough to tax the speed of the E%
R
W
43 \O
P
.

D e R B e o o e T e oy B ninne e e e

L A

host computer -- the Zenith 248 (see section 6.1). Test
cases designed with IDIET, which were constructed from only
six IC packages, began to clutter the graphic design area of
the screen. With careful planning, and judicious use of the
graphic design area, circuits consisting of nine or ten
separate IC packages represent the upper limit of workable
circuit size using IDIET. However, based on the statistics
produced for test cases used during program implementation
(see section 6.1), it is not envisioned that circuits of this
size would produce time delays of any consequence. It is
obvious from those statistics, however, that simulation speed
is inversely proportional to circuit design size. Thus far,
circuits designed using IDIET have not slowed the system.

So, how slow is too slow?

The primary purpose of concurrent processing is to reduce
the time complexity limitations of sequential computers for
large, CPU intensive problems by employing multiple CPU's,
all working concurrently on decomposed areas of a compound
problem. As stated in Chapter 2, digital circuits are, by
their very nature, parallel constructs that would appear to
conveniently lend themselves to concurrent applications.
However, the trade-off between time savings and computing
cost must be considered, especially if no inconvenience is
perceived by a sequential implementation. At this writing,
IDIET stands as an integrated system whose capabilities are

limited in such a way as to present no such time

inconvenience.

LA AL

X
e,

ey

W A
a v

mworoLe, o,

L 5 TR (]

[y

TR S

PSS

K
A
&v
Looking at the problem from another perspective, a !
particular simulator program design and implementation may ~f
limit concurrent applications. Digital circuits are ;;
inherently parallel in design, however, the algorithm and 5
data structures used to simulate these circuits may not be. :
LOGSIM248, and it's predecessors, were designed with this %'
structural limitation, at least insofar as re-hosting the :f
simulator on the Intel iPSC Hypercube is concerned. As
"
detailed in Chapter 4, three linked list data structures are gi
used to completely describe the circuit configuration, input S:
data sets, and output specifications. Communication between :1
the cube manager and the individual cube nodes of the iPSC, _i
as well as, communication between the cube nodes themselves, ;?
involves passing all data structures which are to be ‘
processed in the nodes. For a single node of the cube to 1
perform operations on all, or even a significant section, of i;
the subject circuit, a great deal of time consuming ;é
.
disassembly and assembly of the basic data structures would 5:
be required. iﬁ
“w™
There is no practical way of passing an entire linked ;
list to a cube node for processing. This must be ;
-
accomplished by disassembling the linked list into separate g
entities which are equivalent to the individual nodes of the :
linked list. Then these separate entities (C language Ef
structures, in the case of LOGSIM248) must be individually §
passed to one of the cube processors, requiring a separate S
inter-nodal message for each. Once at the node, these %1
-
45 ‘0
s
Bt L B o L P T T Ty ':ﬂ:.r"' R -\. .?;:'I'}I.\)'.‘ N ‘p:.:.

gl pra gtotate gl ahagly gl ats glatala gte 2 3'a 8'a d's ’s ‘e 8'a 2 §'a §* e A &Y 0 g0 ¥ 00b fot gt B ba’ ta' ba*

individual structures must be re-assembled as a replication
of the original linked list prior to processing. The time
involved in disassembly and re-assembly alone would render
concurrent processing ineffective., The added time required
for multiple message passing would devastate any advantages

gained by parallel operations.

5.2 Parallel Approach

Because future improvements to IDIET's user interface
could alleviate circuit size limitations, concurrent
programming techniques for LOGSIM248 should be explored.
Although the sequential implementation of the simulator
presents problems in decomposition of data structures for
concurrent applications, there are sections of the program
which might be exploited. During the simulation, the circuit
confiquration linked list is traversed and each node
representing an IC within the circuit is visited. This is
when the functions which operate the individual IC's are
called and output pin values for the visited IC changed to
reflect the functional relationship to all inputs. Each IC
is operated independently of the others. However, because
the linked list is traversed in a sequential fashion, each IC
is also operated sequentially. Here is a good example of a
situation in which a parallel approach might save some time.

The parallel approach used for this part of the project

will involve the operation functions associated with each IC

-~ ‘.-'. '.- .n ".I ‘<'|'.--‘,‘-"-'-'-‘~l
EPRSPASFR My S N T Pall Sl T T N i SV

AR LI Y
- - e Ll
PO T P S T P A A A P P R YO L L Tl Sl Sl

NN

g

et

P WA

.\’\.‘l “w

2l

PR}

AT P
4 At 80

] :ﬁ 'v‘ .‘.‘ \., ‘

.
»

of .‘. Y

L
e

i % R &
L

'.-‘ [y A .

. . -
)'.l

LY '.-_‘-’\ LI

“~

A%
I)
RN

o 0% 80 6%0. 8% 32 0% 2%, 3% At a0, al et taf ad bhdog 68 Ua b0 000 00k d a0, 2%0 ath ath 2V ath ataath' et ath 282" 21h" a0a la" 8

type. During the simulation module (see section 4.4, srun.c)
function calls are made to function operate() which in turn,
calls the module which contains all IC operation functions.
The function calls to operate() are made for each input data
set, updated after each clock pulse. Function operate() dis-
assembles the configuration linked list and independently
passes each IC of the circuit to the operation module.
Function operate() is blocked until control is returned from
the operation function called for each IC. It is possible
here to pass each independent IC data structure to a
different processor wherein they will be operated
concurrently., After completion of each individual IC
operation, the process which accomplished the operation can
pass results (the modified IC data structure) back to the
main process. Here, the function operate() will re-assemble
the circuit confiquration list with the IC structures
containing new output pin values. Although this is a small
portion of the entire program, success in this initial design
may be used as a model for implementing similar concurrent

structures throughout the simulator.

5.3 1Implementation

The implementation for this concurrent approach consists
of two main concerns. The first involves the construction of
a program which contains a new executive module and the IC

operation modules extracted from LOGSIM248 (opic.c). This

Y AR A G R AR A A

.\:l"l‘ -
¥ -

A

T

[Y
a3

v

~'-,\] '-;. 'i“‘-'

AR
5.

e
R)

2’9

-
o

A RRRAS

." \'--:‘ \.

P
I“

.
<

3%} t 2
T ThA

v

il

5o

»
Y

L
[

e e
T

.

a4 € ¢ a v 2 2
e

. N ,
'y ®o*-

program, when compiled and properly loaded, resides on all

nodes of the hypercube allowing the simulator to send IC

r v
s
(I]

structures to as many as 32 different processors. The N
executive module of these node processes receives a message ;

RS
containing and IC structure for processing from the manager ;
process (residing on the cube manager). After this IC is %
operated upon by the appropriate operation function, the E;

[

executive module returns the updated IC structure to the
manager process in a new message.

The program residing in the cube manager (the processor
used to manage all node processors) is essentially the same
as that used in the sequential version of LOGSIM248. The
file that contains all IC operation modules {(opic.c) however,
is not needed here as all those operation functions are used
only by the individual node processes. The call to the IC
operation functions (which resides in the function operate()
in the sequential version of LOGSIM248) has been replaced by
a call to the function sendmsg() which sends one of the IC
structures from the current circuit configuration list to a
node process. The node process is blocked until it receives
one of these messages from the manager.

The first approach taken disassembled the configuration
linked list in the cube manager, sent the individual IC
structure to the appropriate cube node for processing, and
awaited the receipt of the updated IC structure back in the

cube manager. As each IC structure was returned to the cube

manager a portion of memory was dynamically allocated and a

the configuration linked list recreated. This approach
failed for large circuits or circuits with a large amount of
input data. These circuits required a great deal of dynamic
memory due to the repetitive recreation of the configuration
linked list or recreation of large linked lists. As this
dynamic memory allocation was repeated memory would become
exhausted and the program would abort.

A more successful approach was implemented in the cube
manager by sending an image of each IC data structure to a
node process. When the updated structure returned, the
updated fields of this structure were copied into the
original structure still contained in the configuration
linked list. This kept memory from becoming exhausted but
suffered a time penalty for the copy operation. Performance

of this concurrent implementation is discussed in Chapter 6.

5.4 Summary

Because of the limitations that IDIET places on the
circuit size of design circuits created by the design tool,
combined with the difficulties in converting LOGSIM248 to a
concurrent implementation, it would not appear as though
anything is to be gained by this effort. However, due to the
expectation of improvements to the integrated design tool,
IDIET, some exploration into a concurrent implementation
should be attempted. A "first-cut" design has been

implemented wherein the individual IC's of the design circuit

49

o .’-.-‘.).'.,. p e “pc .-y . re Tt .'..'. . L AT L~ aLm . LI Y I L R TS T T I I T I TP T U
N O A0 = \,_ \ _'|_.-____.-\ __\\ o \\.‘\(,_. A AN A AR N A AN N T T T A \‘. Sttt

el
LY

P
L] l' l-O.
TNV

'y
a

.,.
P A Y
LY,

L B B]
)

"{
5 <

hY

o r e e
e af et
AN B

P .
u'l,,,'.'.-

v ' e "":‘v‘-‘l‘.
AR 4‘.

s

s,

AN

.
3 & 4 Y
" LA

~r 7

vy
PP

-t
»

Hu
4

)

h ‘!. Pary

.

PR
R P

L
v
RN

>~
[#

7.
2 @

L

N

-

are removed from the circuit configuration list and operated
concurrently. A performance evaluation and comparison to the

sequential version is presented in Chapter 6.

50

:.__-. N {w -' -f"- ;,,-.““"\.;,\‘_'. SSTTa IR J,..' WIOTOAN P A) ‘\i',. _..\ T ,,"4,,.'-_.-_.:-_.;-,:- }’.-“. fetat.

)
.

h TR ks
RS A

PRI
%Y -...--‘

....-
PSS
@ L

3

"ot e

-'-‘.‘ KNI 'I.

L]

Y

T T T TaY

b Y W4
1 SN e

....
e XA 4 B

L

- .

I‘J({."'.:.
PRI

y »

l'l‘lﬁA Ty

l" ~ .-

¢

»

'..'1\

T R T 3 48 AN N N T Y U Y OR U ST L R SAlaal el Sa tal Vol ol ol Vo p tah Yok Bal Mol 8.0 4ok bk e -9

v
LS

W
W
!
k -.'
{
CHAPTER 6 - DISCUSSION -:
>3
l
. ;
s
6.1 Comparing Performance - LOGSIM V5.5 vs. LOGSIM248 y’
)y
o]
L "
Appendix C contains statistical information comparing the ,?
run time performance of LOGSIM, version 5.5, to that of the :
7
L' new LOGSIM248. Because of the inability of LOGSIM, version {
5.5, to run on the Zenith 248 micro-computer, all times used R
for these comparisons were generated by running both i
simulation programs on a Intel 8@88-based, Leading Edge Model a
D micro-computer operating at 4.77 MHZ. Due to the improved _
)
portability of LOGSIM248, run times generated on the Zenith ::
~
248 are also presented, providing additional data which helps :‘
analyze performance improvements. \J
All run time samples reflect only the time elapsed for :
the circuit simulation and file output modules of each f
simulator, Because of the major differences in processing 2
implementation for circuit confiquration and input/output N
N
specification, any run times which incorporated these parts R,
of the simulators would not reflect equivalent performance g
\'
parameters. o
w3
Run time samples for each of the test cases described in o
LhY
section 4.6 are contained in Appendix C. These samples °
A
represent multiple simulations of each test case using the R
o
™
[
51 (]
»
P
F

N AN Yot s L

v " - Tep e L™ e v N " - e o W L e N e e
. - - -
A R 2 O A A S N N N A

“a e N - R N . .~ _ - =
PN AE AT AT AR S e L T R e R e SR G
ATl e N AN T P T P W ey A ol S e O A T Y 1S W)

same input data for each run. As can be seen, LOGSIM248
sample times are consistently similar, as opposed to those of
LOGSIM, version 5.5. This inconsistency among the simulation
run times of LOGSIM, version 5.5, is attributed to the manner
in which circuit output is written to the output file. This
simulator writes to the output file as each output data set
(i.e., one bit for each output monitor point) is computed.
Seek times combined with disk spin-up contribute to the
variance in the samples recorded in Appendix C.

LOGSIM248 uses a different method for circuit output. As
the output data sets are computed, they are stored in the
output display list described in section 3.2.2. All
resultant output data streams are then formatted and written

to the output files upon completion of the simulation.

The first task of developing reliable statistics for this
comparison was to determine the proper number of simulation
run time samples which insured that the sample mean did not
deviate, within a reasonable tolerance, from the true mean.

A tolerance of 0.1 seconds was chosen in an effort to keep
the required number of samples from being too great. A
sample size large enough to guarantee, at a 95% confidence
level, that run times exhibit a normal distribution was the
desired result of the first test. Using the equation for the
Student t distribution (best used for sample sizes from @ to

190) yields the formula:

52

e T T \"\{'l*"’\,'-"'--.'-,:{'-':\-,"-., . T, e AR N AR

AR

il
a

L o YL

TINS5 NG

ee el
.
2,

(,‘.-{-';(‘ « n.

o 7
—

* ‘-p. o,

e

(or error tolerance within +/- seconds) represents the

allowable deviaticn of the sample mean from true mean.

T

to produce the equation:

- _C
T-S/JT«"

(true deviation) is replaced with the sample deviation

which may be rewritten to produce the equation for

required sample size:

baazt R
»

RS

$ N
-
o

b
Appendix C contains three separate reports for each of &

P four test cases. These test cases are: "
S

.

_-'

e
a) BCD.CKT - Binary Coded Decimal encoder X

b) ADDER.CKT - 2-bit full adder

c) BRC3S.CKT - 3-stage binary ripple counter ;S

d) DECODER.CKT - 3X8 decoder -

'y
b o
S

-..
The first report was generated using the § statistical ﬁ‘
3

package (l1), and contains information derived from the o

P
formula above. In the case of BCD.CKT, for example, 5@ By

N

simulations runs were performed. LOGSIM248 produced a mean ::

LY

o’

run time of 4.174399 seconds, with a standard deviation of ”ﬂ
.82459135 seconds. Only 8.1788558 (or one run) was shown to L/

=
be required to qguarantee that the deviation from the mean did gﬁ
not exceed the prescribed tolerance (at a 95% confidence F;
level). However, because of a wider variance in the sample #;
data for LOGSIM, version 5.5, at least 35 runs were required Ei
to guarantee the same deviation limit. The three other test EJ
cases can be evaluated in the same manner. :;
Being confident that the sample distribution conforms to Zi
)
the normal distribution and having determined that the %.
required sample sizes lie between B and 1886 run times (with a _;
deviation lying within prescribed tolerances), a paired t- E
o
test can be used to test the hypothesis that LOGSIM248 kf
Y
performs faster than LOGSIM, version 5.5. The second report
for each test case in Appendix C uses the SAS statistical
" 54
<
AR T T 0 fQI,‘r,»I..-‘_-f..‘(\J“‘J',;I ST LN Ny ‘.'..}n."n;f ‘f.‘f;f;f_:f‘:.-':.(.}. ‘e f

SR

package (l13) to perform such a paired t-test on the first two
columns of the sample data list (supplied in the thirtd report
for each test case). This SAS report also displays the mean
and standard deviation for each sample. The difference in
the two sample means is computed and t-tests performed. The
label “'PR>|T|'' shows the probability of the difference
occurring by chance. For all four test cases this
probability was @.81%. 1In other words, this test showed that
there is a 99.9%9% probability that the difference in the
sample means was due to LOGSIM248 performing faster. In
fact, as the number of IC packages in the design circuit
increases (for those test cases shown), so does the run time
difference, as shown in Table 3. When hosting LOGSIM248 on

the Zenith 248 an even greater increase in trun time is anoted.

Takle 3. Simulat:ion Run Time Campariscn

TZ3T CASE LAOGSINM VUS.S LOGS 1248 LOGSIM248 # IC's
Leading Edge Leading Edge Zenith 248

BCD.CXT £.2114 sec 4.1744 sec 1.4598 sec 3
% i1ncrease 148% $25%

BRC3S.CKT 6.3808 sec 3.1846 sec 1.8072 sec 3
% 1ncrease 201% 353%

AODER.CKT 15.388 sec 6.7107 sec 2.0800 sec 4
% 1ncreasae 2238% 736%
CECODEP.CKT 21.B17 sec 8.7505 sec 2.8257 sec B
%“increase 248 7E5%

55

- ':‘..‘,-,-_.-

5, . 0%

These performance improvements may have been produced by
a variety of variables. As discussed in Chapter 3 and 4, the
main data structures in LOGSIM248 have been improved and
source code optimized. However, the noted improvement in
performance is probably due more to compiler optimization
than source code optimization. Even with this consideration,
the objective of improved performance in simulation run times

has been realized.

6.2 Concurrent LOGSIM Performance and Recommendations

As noted in the previous chapter, the algorithm and data
structures utilized in the design of LOGSIM248 do not easily
lend themselves to a concurrent implementation. The specific
implementation chosen produced rather disappointing results
in terms of run time performance. However, the lessons
learned from this effort can hopefully be used to improve on
implementations used in the future.

Table 4. shows a comparison of the mean run times for
four different simulation implementations. Here the mean run
times for LOGSIM, version 5.5, and LOGSIM248 gathered from
simulations implemented on the Leading Edge Model D can be
compared to those mean run times gathered from both the
Zenith 248 and the iPSC Hypercube. Two separate times are
presented from the Hypercube. The first (labeled Intel
286/318) gives the mean simulation run time for an

implementation of LOGSIM248 run entirely on the cube

56

D
manager. None of the node processors were used for this
’ implementation. The mean run time shown in the table
provides a basis of comparison for any concurrent
implementation used. If, in fact, this time is faster (and
' can be shown statistically to be faster) than that of a
concurrent implementation, then there is reason to believe
that no improvement has been made. This is the case for the
p concurrent implementation used for this project.
- Table 4. Mean Run Time Compar:son for !
Concurrent Implemeniation ‘
Test Case LoGs1ImM24s LOGSIm248 LOGSIM248
Z2enith 248 Intel 286/310 Intel iPSC
B BCD.CXT 1.4538 0.8452 2.1840 |
BRC3S.CKT 1.8072 0.5232 1.8281
ADDER.CKT 2.0800 1.7217 %,1557
P L DECODER.CKT 2.8257 2.511s 7 .6036

The primary reason for this lack of improvement in run
time performance lies in the communication delay between the
ﬁ cube manager and those node processors used by the
simulator. In the concurrent implementation used, only one
{C data structure from the circuit configuration list is sent
r to a node processor per message (communication from the

manager). The time required to execute the operation

57

~ “-.,:.:'-f*“-J:\’N' " %)\'.‘-'.\;-‘-‘.\{'vé\

NN MOL

NN N e N T T T . . NN LS L
e e -‘:-'.-' '-‘\- ._\.‘ N e o ohd

0p ova ath o000 88t 82t 0a® W2t 2% 0at gt 02t €2t 8a¥ b Bat 070 ¢ o 0 0 din 80 bia g ah' oo OV UV W AT WS OO

function used by any one IC data structure is significantly
less than the communication time required to send that data
structure from the cube manager to the node processor. A
proposed solution to this time disproportion may involve
decomposing the circuit configuration list into groups of IC
data structures. These groups of data structures could be
placed into a contiguous array and then passed to the node
processor. This would require the node processor to execute
a number of operation functions, one for each IC data
structure in the array. By decomposing the circuit
configuration list into different numbers of IC data
structures the optimum implementation could be found wherein
the communication problem is overcome while the power of the
concurrent machine is exploited.

This proposed implementation, however, is constrained by
the size of the circuit to be simulated. 1If the number of IC
data structures required for efficient use of the node
processors is large, then circuits which require few IC
packages in their overall design cannot be simulated
concurrently with any expectation of improved performance
over sequential implementations. Presently, as discussed in
Chapter 5, the means for constructing large circuits (using
the integrated design tool, IDIET) does not exist. As
IDIET's graphic user interface is improved and circuits
consisting of a larger number of IC packages can be
configured, then research in this concurrent implementation

can be initiated.

P
S "_.‘ f-r.:‘,_f.. AT

LIS I

(Lo g1
RA S S

P A
‘v“a ‘r.‘-"' ‘y %,

Bttt AT, T,
APPSO o0

L o R B A
AR

"'l-l:l'.l'l"l'
e e e

‘e

s
""_‘
N
“~
)

2
A
The concurrent implementation described above, as well as :*
the one actually implemented, only deals with a small part of “3nd
the entire simulation program. Other functional areas of the :;::
program exhibit the potential for concurrent operations. ES:.
During creation of the configuration linked list, each new IC v
type encountered in the circuit input file (TEMP.CKT) ,
requires two operations. The first operation creates a '
structure containing fields for IC type, IC number, pin types :'.
(input, output, clock, Vcc, etc.}, pin connections, and pin -t
values. The next operation initializes these fields to :\E
reflect those values which are required for simulation but :;?
may not be altered by the simulation (such as the indication ,,:E:f.
that a certain pin will have a clock input). For larger CEE
circuits these operations could be parceled out to the node ;.;:
processors of the iPSC Hypercube in much the same way as \E"
described above. \\
The input data list and the output display list are \;
constantly updated and maintained by various functions within :
the program. These functions may also be exploited in an _,:
effort to further "parallelize” the simulator.
6.3 Using LOGSIM248 Independently \
LOGSIM248 was essentially designed as an integral part of \
the digital design tool, IDIET. As an integral part of this \\
-
tool, LOGSIM248 performs in its' optimal environment, is 0
assured of correct input via the input file interface, and -:
R
N
59)
N AT 2L ol o
. RS

requires no user involvement to accomplish its' task.
However, LOGSIM248 may be operated in the absence of the
other components of IDIET, provided the user has an in-depth
knowledge of the input file interface. It is not the purpose
of this section to educate the potential user in the
independent operation of LOGSIM248. However, a few points
pertaining to this capability should be mentioned.

Because LOGSIM248 was designed to accept input from three
ASCII files created by the graphic user interface component
of IDIET, the assumption is made throughout the simulation
program that all input information is correct and formatted
in accordance with the agreed interface specifications. The
only error checking performed by LOGSIM248 is that of file
content and availability. If *he required input files do not
exist or contain no information, LOGSIM248 enters the
appropriate error message into two output files normally
containing simulation results. All other error checking is
done at the user interface level prior to the creation of the
interface files. To replicate this error checking would
partially invalidate the requirements for the user interface,
degrade performance, and waste precious computing space. It
should be noted here that any improperly formatted file
information may cause improper output data to be generated,
and may even cause program abortion.

LOGSIM248 utilizes input information obtained from the

three files TEMP.CKT, TEMP.IN, and TEMP.IND. All output

.;I

»
\d

produced by the simulator is written to TEMP.OUT and

r g

o

L 4
]

-.J
g}
| r
-~
8
2
TEMP.WAV. After each simulation run it is imperative that g
) . . .
the user rename or copy these output files, During the next -3
g
simulation run these files will be destroyed prior to re- :\
s
o M
writing them with new output information. f
(t
’ As a sideline to those difficulties outlined above,
o
independent use of LOGSIM248 requires some sort of file 5\;
LY
editor to produce the input files used by the simulator. Of ;:'
y,)
ey
) course, this means that all users must be familiar with an r!
"- s
editor capable of producing ASCII files. e
|
6.4 LOGSIM248 IC Library Expansion .
o
AL
AR
LOGSIM248 contains a library of 32 SN7400 family TTL %;
Cde,
} Integrated Circuits. This library is hard-coded into two ,
e
source code files, configic.c and opic.c (see Chapter 4 for ﬁ:
,\
P
an explanation of the operations of these files). Each IC =
requires two functions, one to initialize the chip and one to __.
operate it. These functions are located, one each in '?Z
configic.c and opic.c. 1In addition to these two functions, :?
"
)
i each IC requires a case statement in each file which is used ./
~
to call the appropriate IC operation or configuration Q}
function. 1In configic.c this case statement is located in {f
I‘.‘
the module catalog(), and in opic.c, module icfunction(). ®
3 "
)
Difficulty in upgrading this library has been o
-."
significantly reduced due to the program structure. All that h}‘
e
RH
is required to add a new IC to the simulator's library is the .9
creation and addition of two functions -- one to configic.c :k;
A
61 .o
P
. s

e SO el e e e e e T T e e N
N A A]] . A . 4 78 ol N . ay . N i . ., X » . NaN LA, o . .

and one to opic.c. Additionally, the appropriate case

statement must be added to the functions described above.
This in itself is not an improvement. However, because the C
programming language allows source files to be compiled
separately, only these two file need be re-compiled. Because
object code files exist for all other source code files,
these may be linked to the newly compiled files without re-
compilation. By separating all IC functions from the control
functions of the simulator some upgrade difficulty has been

alleviated.

6.5 Future Directions

Realizing the full potential of LOGSIM248 relies on
upgrades to both the simulator and the integrated design
tool, IDIET. Presently, LOGSIM248 works efficiently on those
small circuit designs which can be create through IDIET, but
lacks the challenge of larger, more complicated circuit
simulations. When the graphic user interface gives the user
the ability to input large complex digital circuits by
incorporating a pan and zoom function within the graphics
package, then simulations on circuits which tax the full
capability of LOGSIM248 may be realized. To this end,
concurrent processing of these large circuits may prove
beneficial in reducing the time complexity of the simulation

program,

62
T T e i S N P N VS R S N e
F o e B R o A L o T A Wk AP L o S S

Pe

-

w."'. -

o ata %6 "0 8%8 a8 a5 2’k a'A a'A %% o' 2'4 a8 o'B a'h %A a'B a'A ' SB AR JV Vi oV v oA oF 2 2% 2%k a2 a & 2 4.2 4 &%

Even though it is somewhat easier to upgrade the IC
library with those design changes incorporated into
LOGSIM248, the major difficulty is the actual construction of
the functions which must be added for each new IC. Some of
the chip operation functions (opic.c) are very involved and
require in-depth knowledge of the functions and hardware
involved. This difficulty, when added to the annoying
problems of re-compiling source code, cause library upgrades
to be burdensome and, most likely, very complex.

A future addition to IDIET in the form of a library
expansion routine would afford those users who require more
design power (but have neither the desire or know-how to re-
write the source code) the ease of library upgrades. This
could possibly be implemented by presenting the user with a
function template equating input to output pins, prompting
for gate level functions, inquiring about previous flip-flop
conditions, etc..

For users not capable of installing the entire IDIET tool
due to computer system configuration problems (such as, the
lack of an EGA graphics capability) it would be advantageous
to incorporate a limited version of the user interface into
LOGSIM248 to facilitate circuit configuration. This
interface could be designed in a similar fashion to that of
LOGSIM, version 5.5, with modifications implemented to
produce correctly formatted output files. A simple interface

would relieve the user of the burden of insuring input file

N .:,_:",;‘. = "\.," A ,n‘.r_ & JV.F‘J' AN O K ". ‘-r_.. \. o _-:,‘(_..:__.:\.-_‘.a\ s \, _ -_,-\ s R
L) . o) - ~ A

FTIER s

Y

K YANes

@ e R R

g g b pt'p b abad

TP T Y PR RO RO PO R R T O U WO W WS Wy “Bad $ad Ual Vab Pab Sat tof Saf tal ‘ah ta) . aba AV Yy

integrity while allowing simulator familiarization in a more
timely manner than is presently allowed by LOGSIM, version

5.5.

6.6 Conclusions

The initial objectives of the thesis effort were two-
fold; (1) to re-engineer and re-host LOGSIM,version 5.5, for
the inclusion in an integrated digital design tool, and (2)
to explore concurrent simulation implementations which might
further enhance performance. Unexpectedly, the efforts of
the first part impacted those of the second.

The re-engineering of LOGSIM, version 5.5, was undertaken
with the expressed desire to improve the portability,
performance, and maintainability of the simulator. As has
been previously discussed, these objectives have been
successfully accomplished. The performance of LOGSIM248 is
markedly improved, the readability and maintainability of the
source code enhanced by a complete redesign, and the ability
to port the simulator to other hosts documented. The
integrated digital design tool, IDIET is built, functional,
and already being demonstrated on many college campuses.
Several obstacles were overcome through effective interaction
between the designers of the three components of this tool

with all components incegrated well.

64

.-d ~ e \"-.‘. \. " -.' \' - ."1 \- - WS N

T e e et T e e St N A AT I A S N N AN 8 NN (N

" a™
O

T

LA]

R L

S

»_a
- -

LA LCAQ

Bty A kW

L)

[o Y
-, w

'V

S

R RNV

- I i
'(.'.'I:l

..‘.'.‘.'-"’\(.-

Sap g 900 tan S kv an 6ttt Ty SR a Ve gt 2l Sath 2k ava’a¥tn’ala’ata’ fat et ant oot a4t ¢ 8 Bt £a0 4of got g0 8.0 4 8"

These re-engineering efforts, however, exposed the
difficulties to be encountered with the exploration into
concurrent implementations. It was discovered that not all
sequential programs, regardless of their seemingly inherent
parallelism can be easily implemented as such. Even though
performance was not enhanced by concurrent implementations,
many lessons were learned and future directions brought to
light., As the capabilities of the integrated tool increase

so will the concurrent applications.

65

0'2.8"

o gt

Y

D

..

v .
- 'l'

0 Ty

WY w3

A

i

Ly

N FERRAS

2Ar S

.
@

W te

‘J':l

R

"-“v',q. ..

ST

-

PRI
r v v e

BRIV AV VN

1 " .
AN L
SOV J]

< -"‘(' <, 2

l. .'-
)

T"l o e

Bibliography

Rowe, Mark C. EE658: Special Studies LOGSIM Software
Engineering. Class Report. Air Force Institute of
Technology, Wright-Patterson AFB OH, June 1985.

Adams, Charles A. Jr. A Digital Circuit Design
Environment. MS thesis, AFIT/GCS/ENG/87D-1. School of

Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1987.

Wagner, Steven M. An Expert System for Discrete
Component Digital Circuit Design. MS thesis,
AFIT/GCS/ENG/87D-28. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1987.

Miczo, Alexander. Digital Logic Testing and Simulation.
New York NY: Harper & Row, Publishers, Inc..

Micro Data Base Systems, Inc.. GURU Reference Manual,
Volumes 1 and 2. Lafayette IN, October 1986.

Rowe, Mark C. LOGSIM, version 5.5. Computer Software.
Air Force Institue of Technology, Wright-Patterson AFB
OH, June 1985.

Borland International. TURBO Pascal Reference Manual
Version 3.08. Scotts Valley CA: Borland International,
1984.

University of California, Berkely. Berkely Pascal.
Computer Software. University of California, Berkely,
Berkely CA:

Borland International. TURBO C Reference Guide. Scotts
Valley CA: Borland International, 1987

Pressman, Roger S. Software Engineering: A Practitioners

Approach. New York NY: McGraw-Hill, 1982,

Becker, Richard A. and John M. Chambers. S Language and
System for Data Analysis. Murray Hill NJ: Bell Labs,
1981.

Rowe, Mark C. The LOGSIM Simulator Revised User's
Guide. Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, 1985,

66

T T N T N T N T] ¢

Iy < , N).,.'_-.J_w_\.r\ LA, \.'_' " \..’\ > \ \.H.“\ LSRN LR \‘\ \'» ’\'* SRS

(' uf

~

AAsl

Wﬁv.ﬁﬁﬁﬁ

0

vl ’. "r '.- '--
s’ . [N

e

o,

.

ey v 8
-

T v
'-"{_. 7, /l/l

Ye"a"
LI
P

- i F e
-. ..'s' < . - :,'-

WD LR N N I R A L TR N R T U U T T Y YU oW e St el aat et gt aad al'af e f'ai an o ¥at N At A et 0oty

13. Cody, Ronald P. and Jeffrey K. Smith., Applied Statistics .
and the SAS Programming Language. New York NY: North-
Holland, 1985 e

. NP T A R R)
' e

\d\).‘ a N\J:'.\- Tt -\-‘ \u" - .'\;‘v--‘- ".-\ " .‘-.‘;-".'." w " -\ >) -"J;\
N R A R R A T N A AR T P A AT AN

Lzl) il st sl)
! - . \.\\\N\..’-&. el .t .
“- ---.--«\ -\J\ -\uv\-”i\ .p..--‘-..‘ .ﬁn..f,- {..- -\ T..-. o .K 4 n- f\. ’

.‘ - - - o ol % ’ ittt R -, ’, PP
1 Wo e o rree [ob T sy n i @000 RPNt NS NN
_i’ nn- -n. ~-,- -f«.f -‘t an Mﬂl’h\lrv ”'\ a A .” aa, . ..-I..».. .f\f..f--”v\w -ﬂ\--:.f«.-...-.r. ..(..-.--

ES
Eororer IR B AA Y Y r 7 B DX AR SN

- LOGSIM2438

Source Code

Appendix A:

68

.,
v

. .-.
~
* .
N
A
[N

R IR
."- I.'- P -_.

eI

CAN

*

O3 o

Wi
A AN \.!.I.-

b - gha Al oatetai val taf vag cag rad tay cph ¥ U SOOIV ROV KON KWV LR .

Source code available upon request.
Write to:

Air Force Institute of Technology

School of Engineering

Department of Engineering and Computer Science
Wright Patterson Air Force Base, Ohio 45433

SO

top ~ v
yofl p

VL

o

" o>

he 4
Py

VXA

C o L

‘e

.

RN

LI I A e
® 45454550

v
L)

oYY
e

.'-'J.'I.'/ "y '. v .-"."'.

4 °® ‘ﬁ,\-‘\

»

SRS

-

-» L] -
AR

Appendix B:

d“:f-’- {n‘J‘J‘J‘ --"J"J‘-

\\\'\."

Data Flow Diagrams and Functional Decomposition

130

'. "" RN VI \"\."\'\ Ny w \

-"J‘J'--"\" W
‘»\‘ \ - . o

y % %
;.f__

l~‘.\ "l.l
AR A

. “ v
L PR
P td

oy

e S L LS [T SN BN 4
A RRA T ;

@Y HZWISHT

"1g 9InIT 4

T

8
YIGNNN

gtz WISHO1

v
3L :300N

70 - ~—357 woig3830 o~ £ 1
TO = .
373 1nd1n0 .— T T
34 AVNYOS INDLNO T
31vQa Z7 A 8+ Z WISHO :1I3MOYd
Y3V IY | L8/ ST 3 Av(V0TI INAYM NIVIDV D YOHINY

*a¥ e u.h’u.,"-)
bad ‘ﬂ.h‘.\n‘!:n'\\

‘-A.':A

S
‘-

.
[
’
L
L
f
.

* gt pa® aa® 80P Aat 8.¢ 00F £t aat 3ot gt

R N .p 6.8 488,804

VoA B a0 ab adooal b

,\.".l-.';" ‘..'1,'0, '.'\I'-f\f\f'lfﬁf\(\-(!

v

POt s

AN A= IR %" R TR Ry OO S, ANkl... e RAE R AT-.f.r.f.......f. L4 .J.......‘........f. ! ,...... NANNS .v..e.M \.. YA o ...¢
’ .
TV gHZWISO0T ‘2 °2In3Td
8z WISHO T Ty
28 3NN uL| ;300N
~ £Y
3719 ¥01d1¥49530 1ndN) =
IS WHOSIIAVM] €
0 I3 10 $374 | yid IYNLNB1S VIVO
TO - 104100 011N8 |, (1vw¥04 10din0 | 10d1no NG
. -
33 IYWHOS INdINO
¥ < r3
VO S&W 3INIINYLS VivO e 11
D13 3LVINNIS HEq VIVD INdNI INgNI Gune | 33 sndni
35Id %2079 1X3N F
__ JuN1ONYLS Yivo 21
¥1d viIvO %D %9 gung | 314MD
31va B'T ‘A3 g7 WisH0 L1 I3MOY¥d
¥3Av3IY | 181, sT:IUVQ [VINOTIO "2 IMVYM LdD (HYOHINY
Ve " A — _ V- A T P 3 - -

LTI

A 2% 42 A% 1% 2'2 A% B' WL VW UW L UW U U 7 U

\J \J

S AOCRCORE R lr by 07270 AR SENEACA CRCON St b SOROE O A AR R g Ao <o ZGETE R S
)]
aInjonxys eyeq LMD PIIng ‘€4 SIndty
¢d 3¥NLONYLS viAva %9 aung 1414
YIBNNN It :300N
f
€
¥1d VAVO U¥D \, |33n100315 VIVO
To 4 O AN LINT
_~
« NOLLYIOTITY W3WN JINVNAQ
7
300N 21 [*—
_ M3IN 3UVIYD [= T
3
SNIJ LOINNOD g | ONNOJ ION 0T
T ./
300N X ONIJ
s - \ TI
¥1d 300N OT #9T 374 13D
31va 9'T:A 8+ Z Wisbo 1J3r0¥d
Y3IAVIY [LBWPST:TAVG | VI¥0]IA "D INAYM 1dD HOHLINY

AT,

AN N g »
f\‘:{'ﬁ\ "~

QLS

S

S
\'\-’_

LR I
_\v'.,\"\f\-’

.

- .-'.-.‘-
L. Vs

oty et e
PN AENT ST N

-,‘v

~ \\"_-

. ae
eI

gat

(M g

& Y2 YARGE o k I x 5
> Bl Y ISP e B DR I G R DY AR AN AP

-

e el 3

Lol il o™ -

g ity £ ICL,.55%%@ Pl W3 OF. T L 73

3In3onI}g Byeq AndUl pring 'hd oanstd

B

g ,"-‘"\-}'\;“\}‘\ L

PP [elin . LI

A IYNLINYLE ViVA LndNI ONng A L4
YIBNNN . 37101 :30ON
JunioNyLs
70 ’ YR = vivQa IndNT
0 4ind IZIVILINT \
f NOILYI0TIY I3IW JINYNAD
WYINLS LNINT |,
Yo -
300N 3LVIYO 4 4NINT)
300N 041 _
3INIVA LNINI - L I
1X3N 0Qv 373 ANdINT
36nd 1) XN 0
31va 1A $rZ WISH0T L J3MrOYd
Y3AVIY [L8 ST T V(D VI¥0 T30 '3 INAYM 14D IYOHINY
— - - . N S Gy VTR - W p—

~
g B

\

RO

AT A e T e e S
N .-. et CRa)
Ddn Bole b 1

Cd

‘\
N

L S O P ~

-

» ™ - » A - - v - -~ . " - -
LN 2 PR S S A S

v
NG

4 -l - Al " - h
‘ Lad Lt

" . »
'..‘o‘ Y

-
»

\J * * \

- AN >,) v

P A S SIDELPT P LAaL L LY -

i O . Qv Yok QLR
..»....ud.-‘.)wm Ve el [AN TNANAMNSS, PR A -\1. R

8In31onIYg 'AB(Q ANdinQ prInd ‘G dINSTY

4 - q " - - - » N T A
.._\a NI AN, J:

CRd
l-'-

58 y3mnnN

IYNLINYLS viIva INdINO GUNg
=Ryl

1104

:3JON

v W, P,
-\!.'{l

NOLLYI0T7TY W3N JINVYNAQ -

JOON M3N aav

JYNIONYLS VIVO
Y1d viV0 1INdINO 4nd1N0 1INI

T0

31d viva Indino

<

34 LVINYOS UINdLNO

T

L4

BRI o NP

R NN T,
> u"lf- “‘. ."-v"-‘.

R

WL

DAL,

Vg 1% 99l
aAry! n.l Lt P

NN

31va 3'T:N3Y

87 NISHOT L I3rPONd

Y30V 3IY |28 WP ST:T1vQ | vIiv0130 9 INAYM 1dJ :YOHINY

V5%
i

- AT AN
o M) 1)

A

iy

3.,-

CRES Y O L L L A O L I @l e S AARY @F L LI O s B OF . 5 o SOl s’
v s ¢ > WA ! . { gl S A O Tl (L PL LIRS - h'nnn.\.ﬂw -
AAUCAA AP f&fh. PO N W el Y EASANA NS \-\.\..r..r..r\rsw Rl Rl S SO N A A RS R B B A Al ...rs%ﬁ........\\ \JL\...\.. m
b S
PA
PM
14
h%
b
’
o
e
_-.‘\L
[.'lu
4
saT1d IndanQ pring ‘9d 2Indty h M

4,
S

Vo G4 0ol ¢ad ¥

98 $374 Andino 0TNg STV &
: YIGNON :37L| 300N 3
:
““.
’
Ne— 71 =
70 3714 34 ¥OLIYISIQ ININI m
3713 WHO0I3AVM — v
WY¥0JIAVM 0ING
;
H To N4 1nd1n - 3 T vivo andino " i
: 39 124100 10d1n0 aung A7
3 31va gT:AY 8IS DO 11 I3MPOYd
. ¥3aV3Y (16 10, ST:T1v0 | vI¥0T30 9 INAYM 1D YOHINY

a, ‘...\._N‘.

'y

5 %

P A AR

main ()

v
P%.

19

. ! " T ' s

buildekt ()

1.1

simulate)

~ 5 N
} -

Lela

2 .

b et S e - m— .

showlist () 8

3

R e

Prrinf list () :

4131

s o« . .
l,‘. A \‘:' 'c.

e v

.:fg?:ﬂ.

NAME: CPT wavne C. DELORIA [TITLE: main ()
DATE: 30 JuLy 87 .
PROJECT: LOGSIM 248 NODE: 1.0

Figure B7. main()

~

> buildekt ()
14 |

i filerr () l

r..I'

seh:fesc ()

line

initnode

bkﬂnﬁ;u_' zeroize () l
| 14

se’rpin () connect() i
144 1.45

NAME: CPT wayYNE C. DELORIA

TITLE: buildekt ()

rQATE? 30 JULY 87
PROJECT: LOQSIM 248

NODE: 1.1

Figure B8

. buildekt()

PR

7 AL LLE,

o E

iy > >

AR AR A)
P A

r
o

NN

& A

- “ N Yy - . . s
"-‘.\A.‘;(,)" :flll't.;.

"‘O - - ’{ -‘l.-
:, .:' @ 15 '("-.’

> £

"y s “s "4 «
Prsrrl@ NN

setpin ()

findic () | | geticno) | | gettype()| | getpin)

M2 | 13431 2344

NAME: CPT wayNE C. DELORIA [TITLE: setpin()
DATE: 30 JuLy 87 .
"PROJECT: LOGSIM 248 NODE: 1.1.4

Figure B9. Setpin()

e . { - fl ',,'.v, »'\) ‘I*‘ PATS -(""J-.;f{,.;f.'._l ‘.f.‘v‘."f".-f wty l"..-"&f‘.-f. (5"-(\-(0 4‘."4’ " a4 'I’ WY oA
. S 0 . £) L E L) - - N " . . e i3 C £l i}

LS L N R
. ..,'\.’\'.-

L i ok o ol b ot
R o St

.

EASANS AN

»
R

R AR RTINS

Y Y '. C s '&{‘&‘\'ﬁ' 11’ -"-.l-)-“-"-{‘-{"‘.

WYY

e W o b e d's $'a.4" Yo 8%a 8% A% ' 8% 8'c 8%a 12 8% 2% 3%2 802 dV2'8%. &'a A% ata &% a0o 20a afn" Cat, Saf " OWORCRIrOrow ot “al e “af_ a9 " v ry gl

Xl

3

i

.ffllg‘l ‘

P R AR 4

R

N

R

connect ()

A

geticno() Ml | gettype() @l | getpin () &

42 | 4 14 R

findic

- ‘.1.‘
2 " Y %y %y

NAME: CPT WAYNE C. DELORIA TITLE: conneet ()
BROJE T Logsn NODE: 1.15
PROJECT: LOGSIM 248 ‘11

P LN

.; :. l' N

(s

Figure B10. connect()

Y YT Y S DR
"'/_.'/-f-'n’ ® ,'5‘:' J

O
55

5

O S Ty

J‘J'ircf

S VA et R B gty e BT RV A 4 e % 2% a 2% 1% 8 e 8a 7 d'a 8 d%s 8 s 8' s 8'n 4'0.8% 8'2 4's 0'8 2'a &'a '8 .68 &' 8 '8 B'8 $'n &io g’ R

findic () i3

1141

‘ 2

initnode () pinﬂm () cafalos ()

11441 11442

NAME: CPTWAYNE C. DELORIA ITITLE: fiadic () o

| DATE: 30 JuLy 87 .
PROJECT: LOGSIM 248 NODE: 11.4.1

Figure B11l. findic() A

[W R ~ N SN T W
CaRC AN AR AR W
o Ny VAL LSRR L L

2t ik a'h Al a'd.n'h s ahanha XX R R AN T T R UN Y Py IR Py Sadiadis gia t's gty Ala Alu AL gl iah cgboab tag b vag bof

cafalos ¢) 3

41412 |

 rode

T*¥¥¥ ()

2 d

S48 h AN Y

1.2.1 fo

11414
11441232

XYL ¥

TA AN

AN

PR Y

'.'
e Ie

o

IS A o)

NAME: CPT WAYNE C. DELORIA ITITLE:
| DATE: 30 JULY 87 NODE: catalog ()
"PROJECT: LOGSIM 248 DE 11412

A

5 N
XN

Figure B12. catalog()

y & 4
&f*l

A 444 ASQ

P I A Ny

"0
)

\5
1

e e ' “» -
~ e el Lo s f
- .k.;i m.\ PN AML?AL\"‘.:

A, & A 4]
PIPARN.

NN

E4d

P NTNEN
> . 4

AT

simulate ()
i \

fileout ()

jik‘ 1.2.8

addout ()

127

IS A]

Al

2y

‘e € A v
AL A 2y
2@ SO e B

*ﬂ'ley /4
-

filerr ()

1114

e
A

“1

initout ()

tl 2,

opera‘hz () >
| 126 | =

buildinpuf()

inptelk ¢ :J evalinp () ‘_:’

i 1.

NAME: CPT WAYNE C. DELORIA |TITLE: ¢;
| DATE: 30 JuLy 87 : simulate ()
PROJECT: LOGSIM 248 NODE: 1.2

«

.v‘.‘- Y

N

Figure B13. simulate()

PN

4

S e 4

DOOOPRN

YEA YN

LA
‘l‘w?"\!"s,

L)

.

12.4

initout () iniﬁnpuﬂ)

buildinpuf()

12.2 123

*: iltmv&‘
f:pts

ckinpts ()

1224

———

err
%, \ ¥
filerome -Fiumnei 7
m\ ‘ err

filerr ()

NAME: CPT waynE C. DeLORIA

TITLE: inttouter; intinput ¢ §; bui“infu‘()

'DATE: 30 JULY 87

PROJECT: LoasimM 248

NODE: 124,422,123

Figure Bil. initout(), initinput(), buildirjut(}

o
‘n\\"\n

) “1\a14\a¢.rar\rrfe. ./'.I'I...-

w30 Yo

);;’_'I. 'y

"y

&

s

YA

o,

o e
PR

v
’

..u..- -'- s- ..oq :. e

IGITAL LOGIC SIMULATOR WITH CONCDRRENT noommn
DERATIONS(U> AIR FORCE INS E
-PATTERSON AFB SCHOOL DF ENGIIEE ING

OH
ORIA DEC 87 AFIT/GCS/ENG/87D: F/G 1271

oTel

L

h

R PO T T

>

(Y

¢

L TR ISR R T TN LS B AL TP L A

Hl

|

Iz

{

vo %e Jtg 4V p¢

:“".‘.‘_‘.:‘.j'_
45 2_8-‘ .‘
e P
il PY.
£l ==
gl))
e

=
bt N
= 15

4

ll

g

&

e
—— | m——
—— =
e =
——— —_——

4 e |

v e

s pth gt

NN

N

[

ha et A 8 naa Ve Vg B, tpl 8

. (A . 0 Vol \ PRUNY VTN UYUYUTY Yo g%, 8 0 e ALl 2 e b et ad'ed a8 86 B b (20§20 06 $ab bab bat s i8s 0B ot a'd te o

d ;
rate () .
. i i
12.6 _
N
)

icfunction ()
< ¥ node -
E % ¥ % () :
12611 t0 :

© 12,6132

L
L e o9

N
-
‘
v
(]
v
NAME: CPT WAYNE C. DELORIA _ITITLE: operate () - v
. [DATE: 30 JULY 87 NODE. 126 ‘
PROJECT: LOGSIM 248 DE: 1.2, %

Figure B15. operate() ¥,

e {.,‘ 'q-‘:f\'.f N ,-‘:.“_:.-\"..:‘..-_-‘:{ ol -_.;_.. e A . .:. A ettt AT RN RPN

‘o

Py '..\.v.-
Bt o

~
f,

.) G0 ae av. 2t av. A% 24, atoad vat.<at ‘sl t

DN X ¥ MEAENRY \J J + ¥) at 08 o0) of el WUy “avh' v’ N

addout ()

127

3¢fd¢sc()

116

geticno()

414,

sefpin() itos ()

4 1274

NAME: CPT WAYNE C. DELORIA

DATE: 30 JuLY 87

TITLE: addout ()

"PROJECT: LOGSIM 248

NODE: £.2.7

rigure B16. addout()

. .t g e ar .
» -(“_‘,- Al .'.-. J'_‘F.I.-'.‘-,‘r

DAY

IR e

L)

..v"\".‘(- (~'.‘f\f
L) Ko X o X . L

LIRS L4 Nl e " n®e ",
‘. .‘\ V{‘\- -

“
.ff'(‘ N

e W Y, ‘."‘, e s '1’
e PN)
AR

P

?ﬂ‘.":x‘
LY

}

2L
(l‘

r
>

TEA LA
. 8y !,‘ -
¢y s AQ K

N

'4
a
[

.' 1]
l_]‘l N
" .

¥ “r xS N oK
LA AN LGN

h *.:;i
.sle &

o
x

r

LANY.
{‘-"3.‘\‘

7

fileout)

126

Y
A

filerr ()

Srapl'\ou‘l’ ()

_ 1.28.

Iﬁk rtr

inline ()

formatout()

12841

NAME: CPT WAYNE C. DELORIA

TITLE: fileout ()

| DATE: 30 JuLy 87

NODE: 1.2.8

PROJVECT: LOGSIM 248

Figure B17. fileout()

B-17

R S P R N
AT A RV R T A

(l y
SO
Ty
=
-
W
‘N\
1
@

'y " .. '..I.' ; .. *
e el@ ’ .

1'((-,vrlt
. e

h TP -
vl @ T

Xk

4

-

v -

Appendix C:

.‘i'-"

.

e

Statistical Information

148

.

e .
A

- .‘ - - Y -
TN

™

~
RS

v a™a™ N o
”fv }\

'.f

0'~4""

&
%N

L4

[o8
S5

S

v

.y

LJ

S

L
'“"‘;"‘i'

S e R T
oy (& -'.:._’.‘

‘.
S
52 2

.-.‘_':

.

J

XA
r &

')

R

""‘. Lah

AN
4,8 ¢

S

o
222

=l @

. . » = Pl -
u, '."'('.‘

N

LOGSIM248 vs. LOGSIM V5.5 -- Sample Requirements for
i BCD.CKT

NUMBER RUNS NEEDED FOR SPEED COMPARISON

8.95
confidence level

P 0.1

error tolerance within +/- seconds

Read 50 items
Read 50 items

LOGSIM248 Data

4.174399 9.02459135
average standard deviation

$.1700558
NUMBER RUNS NEEDED

LOGSIM V5.5 Data

6.227600 #.3524987
average standard deviation

34.9415
NUMBER RUNS NEEDED

T - - D N - " - - —— = = = = . D - Y G e D Mm e v W N n w = e A = e = e -

Paired T-test for BCD.CKT

1 LOGSIM RUN TIME DATA 1
14:55 SUNDAY, OCTOBER 25, 1987

VARIABLE N MEAN STD ERROR

OF MEAN

LOGSIM V5.5 58 6.21140000 9.04485533

LOGSIM248 58 4,174808000 8.00341951
1 LOGSIM RUN TIME DATA 2
14:55 SUNDAY, OCTOBER 25, 1987
VARIABLE N MEAN STD ERROR T PR>|T|

OF MEAN
DIFF 56 2.03660000 0.044084990 46.20 0.06001
c-1

X - - * A AN RN ~->--‘-q-—--— ~ o3~ vy t . R S L LI
N Y N N M NNy e M e Y S e e g

Run Times for BCD.CKT

LOGSIM V5.5 LOGSIM248 LOGSIM248 LOGSIM248)
Leading Edge Leading Edge Zenith 248 Intel iPSC ®

‘x-\ P

\l
6.55 4.210 1.430 2.18¢ =
6.40 4.190 1.430 2.180 s
6.82 4.200 1.430 2.180)

6.11 4.200 1.430 2.1680 .o
5.98 4.190 1.430 2.168 $
5.86 4.180 1.420 2.1880 :f:
5.85 4.1990 1.420 2.188 S
5.92 4.190 1.439 2.18¢ iy
6.66 4.200 1.439 2.1889 S
6.86 4.220 1.430 2.189 o
5.85 4.210 1.430 2.1680 A
6.46 4.1990 1.430 2.1640 N

l‘ 3‘ l'

e

‘
40

6.40 4.130 1.480 2.168 -3
6.03 4.140 1.490 2.189 o
6.30 4.170 1.480 2.160 ®

-

6.19 4.160 1.490 2.180 .
6.15 4.140 1.480 2.169 2%
6.85 4.170 1.480 2.220 oy
5.71 4.190 1.420 2.1680 N
6.11 4.170 1.480 2.180 v
6.12 4,156 1.430 2.180 °

(=]
.
—
w
-3
.
—
>
(]
—
.
(%))
(-
=
[,¥]
.
—
o]
[~]
’

']

y e
B

a7
« s

L e

PSS
» N

6.17 4.150 1.489 2.1880 NN
5.96 4.160 1.420 2.1890]
5.61 4.170 1.480 2.220 J
5.99 4,160 1.530 2.180 o
6.39 4.1580 1.499 3.000 o
6.52 4.1880 1.480 2.189)
6.09 4.1780 1.5480 2.160 .
5.87 4.1590 1.490 2.160 N
-J\

”,

c-2 o

h)

°”

. ‘4 't a't a’h o WU WL N T 2h 0B a A aVA etk 2'd 28 a'h.avh ath all'aMe

Run Times for BCD.CKT (cont.)

6.24 4.1780 1.489 2.160

6.02 4.158@ 1.430 2.260

6.53 4.149 1.489 2.180

7 mean 6.2114 4.1744 1.4598 2.1949
Cc-3

“-"i. Y W L T L L P P T TN "Mt mt e et e g R A e - .
Lo d‘-f“f. “.“ -r-r‘-l'J'.-\J'\ "I%I\J‘_-.- N vr\. R ra\ \..‘.r:-z,~ \,\\._r_._ DRSO \.r .-.1-,* v

N o e U]

e
.
._‘_\‘

SO e
l.. LRI

»
X

&% &

Witee e
g &

A S Py
P

's

‘0

-

- S
P Bn I PRI
A

>
'ilﬂ g
X L

3 {o el

fogb gt Lo b at b gt gty b gt g pv. abo avo b, aig AlL R0 Big V. 4%, B0 82 42 4'a {4, AR AN DG 80 S B0 12® £2° 82" o 02 Ba°

LOGSIM248 vs. LOGSIM V5.5 -- Sample Requirements for
ADDER.CKT

NUMBER RUNS NEEDED FOR SPEED COMPARISON

g.95
confidence level

2.1
error tolerance within +/- seconds

Read 70 items
Read 78 items

LOGSIM248 Data

6.710714 8.03600813
average standard deviation
$.3605694

NUMBER RUNS NEEDED

LOGSIM V5.5 Data

15.38814 9.495871
average standard deviation
68.3793

NUMBER RUNS NEEDED

- s - A . e P = - D p - . D - - . - -y = = - = . = - -

Paired T-test for ADDER.CKT

1 LOGSIM RUN TIME DATA 1
14:58 SUNDAY, OCTOBER 25, 1987
VARIABLE N MEAN STD ERROR
OF MEAN
LOGSIM V5.5 70 15.38814286 9.85926789
LOGSIM248 70 6.71871429 3.60430379
1 LOGSIM RUN TIME DATA 2
14:58 SUNDAY, OCTOBER 25, 1987
VARIABLE N MEAN STD ERROR T PR>|T|
OF MEAN
DIFF 76 8.67742857 @.85721547 151.66 0.8001
c-4

S A i e S A e L e e i s i S T e
i) . L) - - - ol . ~ o - v L) N > » N N &

et ety

3 ¥ \

s

AN

< Ca ' r"‘l.

.

SN
b

4

g

T \.l &

o
Al

ot

P
A

. -
s e
y .

e

SN

sp el il

‘m.r5

et e

-

‘;.l' [

' &

.’1'. [AENIN

"'t\%‘.'-\'ﬂ‘. \]

ced)

LA

»
(]

4@ o

a,

;%

AR

s

o

-
o

Y

&

4

£ 5

e

o .
L)
WY,

P AR s

Je gt
P

o
CALACAL B

Pl

hY

.I ‘I

7 4y
‘v e Y

F
a
L4

Run Times for ADDER.CKT

LOGSIM V5.5 LOGSIM248 LOGSIM2438 LOGSIM2438
Leading Edge Leading Edge Zenith 248 Intel iPSC
16.43 6.750 2.099 4.160
16.28 6.799 2.200 4.1490
16.87 6.7080 2.0390 4.129
15.59 6.780 2.090 4.160
15.88 6.7490 2,090 4,140
16.72 6.740 2.039 4.160
16.42 6.720 2.090 4,149
15.45 6.7080 2.030 4.160
15.51 6.720 2.099 4.129
15.63 6.768 2.140 4,140
15.47 6.7880 2.090 4.1490
16.31 6.7180 2.080 4.100
15.37 6.7580 2,030 4.1490
15.91 6.730 2.090 4,120
15.54 6.740 2.1449 4.129
15.13 6.7580 2.159 4.120
15.35 6.730 2.090 4.120
16.85 6.778 2,039 4,120
15.22 6.730 2.0940 4,120
16.00 6.738 2.090 4.120
15.25 6.789 2,088 4.120
15.48 6.740 2.09¢ 4,140
15.68 6.730 2.099 4.160
15.52 6.7680 2,030 4,120
16.45 6.700 2.030 4.120
15.89 6.758 2.090 4.149
15.60 6.750 2.230 4.100
15.92 6.728 2,990 4.120
15.86 6.720 2.0990 4.120
15.90 6.760 2.030 4.140
15.59 6.710 2,150 4.120
15.81 6.720 2.084 4.120
14.92 6.720 2.098 4.160
15.81 6.738 2.090 4.120
15.15 6.739 2.140 4.180
15.22 6.7490 2,099 4,140
15.09 6.730 2.080 4.1490
15.26 6.760 2.140 4.120
15.19 6.710 2.09¢0 4.140
15.22 6.770 2,890 4.14¢0
14.93 6.689 2.038 4.149
15.17 6.670 2.999 4.120
15.94 6.684@ 2.09¢ 4.149
14.96 6.680 2.998 4.1490
14.96 6.6980 2.099 4.140
15.45 6.6780 2.030 4.120
15.01 6.6890 2.0990 4.140

—r—

RERA TR Y PRI Y U U

+ \J \J 2 U WV \i \J 4 \J “ab g, Y USTN \ $aal ot Al “at tal cat.‘at ‘at)’

\""\

e

R T P]

Eelaay

T]

AR

X

ALY

I‘I s .f
I ¥

. 4,

I-“' LNy

ThTaTaT e
(FOO0N

.l“.

s ‘v v vt

=
@

-
L4

XA
)

. l." ® 4 _f' f

-
..............

Run Times for ADDER.CKT (cont.)
14.83 6.678 2.0990 4,220
15.06 6.678 2.080 4.180
14.906 6.670 2.090 4.340
14.95 6.679 2.090 4.160
14.99 6.670 2.099 4.1490
14.94 6.688 2.999 4.180
14.76 6.680 2.080 4.160
14.98 6.678 2.08¢0 4.129
14.76 6.689 2.090 4.120
14.69 6.680 2.0909 4,120
14.87 6.670 2.09¢ 4.12¢9
14.82 6.670 2.0990 4.140
15.01 6.679 2.999 4.18¢
15.89 6.688 2.099 4.189
14.97 6.680 2.099 4.149¢0
14.99 6.670 2.089 4.160
15.19 6.680 2.099 4.1449
15.29 6.680 2.14946 4,160
14.88 6.684 2.14¢8 4.140
14.86 6.670 2.140 4.160
15.21 6.670 2.140 5.129
14.74 6.679 2.150 4.120
14.86 6.680 2.1490 4.1446

mean 15.3881 6.7197 2.89089 4.1557

C-6
N S A S S e S e T e e T L

rooa POV UNW W U U LW UW U W T LW L U UNT U U LW U U U U ASOOA U U R U U AT U DN U U U UL U T T U U TS o

LOGSIM248 vs. LOGSIM V5.5 -- Sample Requirements for
BRC3S.CKT
NUMBER RUNS NEEDED FOR SPEED COMPARISON

8.95
confidence level

9.1
error tolerance within +/- seconds

Read 65 items
Read 69 items

LOGSIM V5.5 Data

3.165692 2.02839286
average standard deviation
8.2246619

NUMBER RUNS NEEDED

LOGSIM248 Data

6.380869 9.4872877
average standard deviation

66.659
NUMBER RUNS NEEDED

- - . A - - —h - = =B e = v s - = = . = — - - - W m 4 4m = =

Paired T-test for BRC3S.CKT

1 LOGSIM RUN TIME DATA

15:91 SUNDAY, OCTOBER 25,

VARIABLE N MEAN STD ERROR
OF MEAN
LOGSIM V5.5 69 6.38086957 0.085866254
LOGSIM248 69 3.16463768 $.60338984
1 LOGSIM RUN TIME DATA

15:81 SUNDAY, OCTOBER 25,

VARIABLE N MEAN STD ERROR T
OF MEAN
DIFF 69 3.21623188 8.05740001 56.03
Cc-7
B T o T L o (4 e o B0 L T o o e L Sl

L) \J v) U

‘I‘.‘.‘h‘-‘u'."\
NN AT T AT T (T AT

™

RN R

3

»

.-

‘s S @

]

””.uu.
S
ey sy

L 4
¢
. x

Yy

v

+ T
.r'..-

]
A e e
\J {

v

,.-.'
& ANV
4.,1,'/.' &

v
'

.{‘a

LAY
A,

..

B
PP IR
.

~Q® .

}
&

. oo,
(ﬂfqu e
2 L2LQ 4

;\’
".-fi:

OO
YOUAXAS

LR
. N
LV IR .'l

e 6

Run Times for BRC3S.CKT

LOGSIM V5.5
Leading Edge

i

.............

LOGSIM248
Leading Edge

LOGSIM248
Zenith 248

*'\"\.

LOGSIM2438
Intel iPSC

T R

e e\ e
A I I P
N At e e N e

8 '8 gie o0 n'\" TRV WO N T TV W TR 3 §a% @ Pan € 820 8.0 R0 2. 4"0.00 s 4'a 0 2 kb el NI R U AR RN R Ty X

Run Times for BRC3S.CKT (cont.)

6.20 3.1490 1.818 1.920

6.63 3.148 1.819 1.928

6.35 3.160 1.819 1.900

6.62 3.129 1.8290 1.949

5.96 3.159 1.870 1.929

6.90 3.1490 1.87¢ 1.929

6.01 3.158 1.878 1.909

6.27 3.199 1.81¢0 1.92¢9

5.58 3.160 1.81¢ 1.929

5.78 3.1490 1.819 1.949

L 5.61 3.150 1.768 1.929
6.08 3.149 1.7680 1.929

5.84 3.14a 1.810 1.920

5.76 3.160 1.759 1.920

6.27 3.149 1.7580 1.9490

5.91 3.169 1.760 1.929

6.47 3.158 1.87@ 1.92¢

5.82 3.140 1.81@ 1.9249

5.89 3.169 1.8190 1.929

5.58 3.129 1.819 1.920

5.71 3.159 1.8180 1.9060

5.72 3.168 1.819 1.920

mean 6.38@9 3.1646 1.8472 1.9281

c-9
‘h",l.', -".'.o .: 4 .. " '~r.: 0 "‘ AN SN *-*- \.(‘,‘-:‘.,-'f:.- e ‘_'»\.-‘_:‘._:(:.-:‘.{..-::,}_.:}: Y

& _ 2 _a_e .
T aLS
‘:‘.‘II

LY
-

iy

I

o
[Ny

AN LA
fl’-. e

A
[

N

y

"r‘
L

L‘f

v

~

aa @ ;

-l,l".l

I
¥

y" s

. LI v [
! .
R J oA

[

o el
Tt

LN SRy R

‘—'"f' P

L SN A L
T, .zf-".'.-_f.’f

P Y

T ‘woak a8 atd aB a3 ot L.a'h 2% o'k 2% a'8.2"% 2°8 . 2"0.2%% a* 4 2k ot LT "2t 10°a%4 ath at va atl ave ofa ol ofe W) \] W ')

o
‘|
.
A
e
LOGSIM248 vs. LOGSIM V5.5 -- Sample Requirements for "’;
DECODER.CKT o
A
NUMBER RUNS NEEDED FOR SPEED COMPARISON Y
8.95 g
confidence level N
oo
o
H
error tolerance within +/- seconds A
Read 112 items vl
Read 112 items V2.
orl
LOGSIM248 Data
\d“'
8.791125 9.02086686 ~
average standard deviation '.;;
]
#.1206719 e
NUMBER RUNS NEEDED [
L
LOGSIM V5.5 Data ';
by
21.60821 8.566321 S
average standard deviation @
AN
88.2772 o
NUMBER RUNS NEEDED o
-
._-"
-- \f[
.
Paired T-test for DECODER.CKT o~
N
S
1 LOGSIM RUN TIME DATA 1 "
18:46 SUNDAY, OCTOBER 25, 1987)
-ﬁ
VARIABLE N MEAN STD ERROR
OF MEAN f‘
LOGSIM V5.5 112 21.60821429 0.05351229 N
LOGSIM248 112 8.78187143 #.60239535 }Q‘
1 LOGSIM RUN TIME DATA 2 N
18:46 SUNDAY, OCTOBER 25, 1987 Y
A
VARIABLE N MEAN STD ERROR T PR>|T| 2
OF MEAN Y
[
DIFF 112 12.82714286 ©.85383677 238.26 @.68001 Ry
o
B
c-10 N
)

e’

AN,

P e I (O N S S S S O S S S S U

“e .
.\._.__.._.

S R ST Y
A SRR EY

__J' *

Run Times for DECODER.CKT

LOGSIM V5.5 LOGSIM248 LOGSIM248 LOGSIM248
Leading Edge Leading Edge Zenith 248 Intel iPSC
22.17 8.800 2.800 7.600
21.67 8.7580 2.800 7.608
22.52 8.770 2.819 7.608
21.79 8.758 2.868 7.580
21.65 8.758@ 2.840 7.5648
21.31 8.758 2.809 7.560
21.52 8.7580 2.800 7.640
21.77 8.779 2.86¢9 7.608
21.54 8.770 2.800 7.609
21.65 8.750 2.800 7.5680
21.45 8.7760 2.816 7.568
21.97 8.779 2.800 7.640
21.52 8.7580 2.800 7.628
21.51 8.758 2.758 7.580
21.52 8.750 2.800 7.569
22.19 8.780 2.809 7.560
21.44 8.758 2.859 7.588
21.26 8.758 2.919 7.580
21.82 8.750 2.869 7.560
22.91 8.750 2.850 7.568
21.71 8.759 2.8690 7.568
22.13 8.750 2.920 7.648
22.39 8.7780 2.8640 7.560
21.45 8.770 2.860 7.560
21.62 8.756 2.91¢ 7.600
21.37 8.760 2.808 7.588
21.67 8.750 2.868 7.600
22.91 8.758 2.800 7.560
22.79 8.760 2.869 7.588
21.44 8.7680 2.860 7.568
21.91 8.750 2.850 7.688
21.73 8.750 2.859 7.5880
22.68 8.750 2.860 7.5680
21.48 8.758 2.919 7.689
22.51 8.809 2.860 7.680
22.71 8.780 2.910 7.600
21.18 8.790 2.850 7.580
21.54 8.780 2.8580 7.568
21.41 8.84d4 2.869 7.5689
21.41 8.798 2.860 7.56@
22.79 8.7740 2.800 7.589
21.88 8.7980 2.916 7.588
22,42 8.830 2.860 7.5889
21.75 8.7880 2.920 7.5680
21.34 8.780 2.91@ 7.600
22.34 8.8190 2.910 7.5880
21,21 8.78¢ 2.860 7.5680

21.23
22.91
22.79

21.44
L e

21.73
22.68
21.48
22,51
22,71
» 21.18

21.54
21.41
21.41
22.79
21.88
22.42
21.75
21.34
22.34
21.21
21,23
21.35
21.79
21.26
21.48
21.01
20.91
28.96
20.89
22.57
21.14
21.20
21.29
21.12
21.01
21.069
21.21
21.43
21.06
21.50
22.21
21.15
21.91
20.91
21.0¢0
21,25
21.06
20.98
21.45

-\' g \fp‘,\,,

8.779
8.7789
8.830
8.819
8.8040
8.820
8.780
8.830
8.779
8.819
8.78¢0
8.800
8.780
8.799
8.7789
8.7780
8.770
8.770
8.769
8.788
8.770
8.830
8.820
8.78¢4
8.789
8.818@
8.830
8.789
8.839
8.830
8.810
8.800
8.788
8.760
8.800
8.7840
8.7880
8.819
8.780
8.7889
8.839
8.8290
8.79¢0
8.794
8.7880
8.760
8.7680
8.790
8.7848
8.780

9,

Run Times for DECODER.CKT (cont.)

2.859
2.800
2.860
2.850
2.8090
2.8540
2.859
2.850
2.860
2.919
2.8649
2.8060
2.8589
2.8190
2.809
2.7490
2.860
2,800
2.800
2.800
2.8409
2.810
2.800
2.8580
2.80¢0
2.800
2.8090
2.800
2.800
2.850
2.740
2.800
2.800
2.859
2.818@
2.800
2.7490
2.800
2.800
2.81¢0
2.8090
2.800
2.860
2.859
2.8590
2.860
2.869
2.800
2.800
2.800

A e v\ RN P vy f’ el e f T A L (~ - TN

7.560 Ng
7.5880 R
7.569 :
7.600 -
7.580 <
7.569
7.788 o
7.560 .
7.580 “
7.588 2
7.588 23
7.620
7.568 A
7.568 N
7.600 3
7.600 Ty
7.560 o
7.600 .
7.580 o
7.5680 o
7.608 N
7.640 ﬂ?
7.600 i
7.600
7.600 '
7.580 &
7.640 ;:
7.560 -
7.5680 ‘?'
7.5680 ®
7.620 3
7.588 =
7.5680 ‘_.*
7.580 ,:.'
7.580 LN
7.649 [
7.580 ':‘
9.100 R
7.680 o)
7.640 ~y
7.600 YA
7.580
7.580 e
7.580 RN
7.680 N
7.560 N
7.648 N
7.600 ®
7.580 AN
7.580 N
B
~
)
.'\
‘\:'u
N \.’ N *‘:r}'r:'

AT REAR TR X AR AT T R VY U UN I PR U UN LT U U D% DR UW A UV O O U U O LW OO US U Y W W UN Y WS U U AU U ‘gl Al gt
g

L Run Times for DECODER.CKT (cont.) it
~4
21.16 8.818 2.800 7.600 3
20.99 8.780 2.800 7.569 3
21.43 8.818 2.800 7.560 4
21.18 8.838 2.800 7.589 ‘
L 21.24 8.789 2.800 7.580 .
21.26 8.760 2.800 7.580 9
21.16 8.7880 2.800 7.6080
20.96 8.800 2.8080 7.628 :
20.98 8.788 2.758 7.688 :
21.89 8.770 2.800 7.640 o,
b 20.96 8.770 2.800 7.568 N
21.28 8.800 2.748 7.580 o,
21.13 8.780 2.800 7.600 Ny
___ N
mean 21.6179 8.7885 2.8257 7.6036 N
X
~
)
“J
.
4

‘\-"-“-:-) ‘r‘. ' '_ ryyyy, o 'v‘r{r

e

'(1.4‘

2 F o .
e s 8 ¥ .'l

(@]
|
—
w

[y

“~

AT PSR ET IS PR PR TR SR T ATt Tt e T T A T A AT I N I LT AR L LG L I
AR D R T R N R A S I S A A A A S A N AN A A R N A N A N e A I S N AT AR A NN AT

R A B L A, L~

o ®

Appendix D:

ral et tal ‘et *al_VYall %at tad *

CatoVad tag Vel tal gy gt

Test Case Schematics and

LSS

Graphic interface Images

162

LTI N S PRI S N v TNt AN Y s
A R s e A

“w

) -
- O N o

.
»

-

)

4
‘)

P

]
<

p)
b
F ol

&

I‘.'..r“

iid

hY

=3

‘s
51.“

lﬁl'l
]

TN NAYYS KT
AADARAASR LA
’ ® Kl

)

PN NN
o ."{I'.f:'i\. i

"

'
L,
-

0,-’-

b "
oy

]
L)
.'..S.

vy

S I 1

IC#1:SN7400
2:SN7410
3:SN7480

&

o4

N

Figure D1. Scrematic Diagram for BCD.CET

CuRnEY LY LA R TR ST ALY YW
RN > },a X' ?'. R ath 2R RGN

03

o1}

D~ e T e S e

PO

Y

Y

Id

0y,

L'

[

s S

‘

P

a
L]

o oy % %
Pt

1.

P

VA

>

4 % s
A,

-.-."ﬁo S

PN

:.‘:

¢
RS

et

"I l‘
» ",". el e

yANN L

s° .
i a_s

L

WSS

CLK! Main Menu
_

oesiyn
. _ [— ,
byl ! "Circuit
- ! !
—_ R ;
| ié]| : - . Retpieve
—_— i i !
! : 2 Pt " ‘Cimeuit
A2 E—-'i L e - = = _C w e
po i =740k O TAE | L ®age ;

— - — | ——e R . Del CKI
a1 B w2 =23 om B
|§"___F =l =] |- - ' Save CKT
; ! P e

\ | ! |]
' | B
; l] L 1CE
| | | LOGSIN
A)
14 | R
=
LY I Helwp
—etremaenens - ‘
= Exit
e = vt e e e et e e - - *

Figure D3. Graphic Circuit Image for BCD.CKT

11:01010101010101010101
12:00110011001100110011
13:00001111000011110000
It:00000000111111110000
1S:10101010101010101010
[6:11001100110011001100
17:11110000111100001111
[8:11111111000000001111

7, r 1,7

Figure D2. Inputs for BCD.CKT

LA AR

L] .' '- ..’
[N l‘ll:"

YN e

s
r

- TN R AV L IS A VL ["L TS PR P] AP T I P SR e N T IR e 'b.'v\'-._‘ ‘\.‘w.\ N e
S0 S A S S AT i T AL O 1 VR SR A ARG A AR S "

A Y T Y N Y NN N R R N T WO W R W R N N R R T ST WO WO W T,
g Ay ain)
k Input data sireams:
Input #E81 hﬁxi RARLAENRERRSE
Input %882 Port il --E N
Input 2883 Port i3 (oo M - - -
Input #884 Port i4 feremm e NN
b [nput 4885 Port iS5 ALK RERER
Input 4886 Port ib cEN__E_ R
Input %887 Port i7 .
Input #4888 Port iB N _
P Output file contents:
IC8 2 (SN 7418} PIN R12 (-0 SN0 '.;
ICH 2 (SN 7418) PIN # 6 - EENESEDE SR . :j
IC % 2 (SM 7485 PIMN 2 S LN R L N
Input 8 2 AR _ER__NE._ER_ W %
[S

Figure D5. Waveform Cutput for BCD.CKT

F
-

RN

Input data files:

.'_.7

il = @81 A RRaHRGE 810101631081 081018181381 Sy
iz = 082 BNt §81 100110911661 16681 1 o
i3 = QA5 wewnxsesssesesassecs; §00011110808911110000 o
id = 994 LR AR RIIRNNN . §000088812111111130838
i3 = @83 IPHHHHSHEHEEHEHtSH 19181018161818181818
i6 = 806 M eenHataaanee 11001100110011081100
i?7 = Q@7 TR 0 11110000111100001111
i8 = @es HHHHHHHEHHOHHeHHE: 1111111 1888888881111
output file contents:
P JICH 2 (SN 7419 PIM #12 '898101911111111:38081
1IC W 2 4SHN 7418) PIN R 6 1911111111081111118111
IC # 3 (SN 7486) PIWH # & 11016G1661161616611616
Input # 2 1801108@11001108116801°2
* Figure D&4. Binary Output Image for BCD.CKT
Y D-3

._,'._,NJ R "\‘:\' \‘- \':3

DI

T HAQAY X0J Wexdelq OTiewduds -9Q oIndTd

YOVINS = ¥
TOVINS €
BOVLNS *7
98H/NS * T4 1

Nﬁﬂ

20

10

bt &
7 ﬁ 11 .
7T o
//|2. o
%
¢ >
z :
. . o (8 0 - - A A W — -1

CL®! Main Menu
=

— — = L wesiys
cu |—'———"—'- 'T—_ .—‘ X .
l m— 7486 = A . Circurt
e -——————
ﬁ . T l! - ! - TTmmmTeT
L L - al '
{ t i ! . Retrieve
ll ' ! ' ! '| ;)
- vl i) . e um W
[S T SN
WL o - = A ~ . Del uHT
[I Rp—— 7 T gl = - |
'r 1 —*—'T————. E.‘-__._L i _,_&.—-—mu "™ Save CKT
- ! 2 Fo e !
——
| r~——_. = é ;i% T
, = = 1¢E
G\ M, —— !
‘l M| , LOGSIM
H R P R
' N e !
! 1 —— - !
v T " Help
.) on 1
] # i k D cmmmm— e
—— -tt .
e ;:u
e = EXIT
e < e — S P x=3 -
Figure D7. Graphic Circuit Image for ADDER.CKT
11:01010101010101010101C10101010101
2:0011001100110011001100110C110011
13:000011110000111100001111C.2Q1111
I%:0000000012211111100000000121212111
12:0000000C0CO000002222222222212112
)
Figure DB. Inputs for ADDER,.CKET
)
)
RN AN TSR IR,
U W \.A“;(RV

A R i
. "t‘.

R
2

r

Input data fxles.

Al = @61
fR2 = @@2
81 = @9@d
32 = 883
Cl - @835

w4 1915161818161 681681@1914131814181L
itﬁﬁt’~¢~o~’o*t¢1-- 901130@110611281:9@1.601108110811

- 109091.1.99991...90900111.89681111
#‘44&44446;&4&-&-4# e eeeR.1111...0088000eii12111.

- .- ——-----

- —— . = = - W b T e . " e 4 - - —

Outpust file

1IC 8% 1 (SN
1IC % 1 (SN
IC 4 4 (SH

contants:

7486) PIN B &
7486) PIN w11
7364 PIN # 4

18131.21001811813131091011910@1491
.391-31‘81188‘3819113118819819811
‘00000561 0611611138661561183114212

Figure D9. Binary Output Image for ADDER.CKT

Input data stireams:

Input #881 Port At -2 2322332322331 323313

Input 2822 DPord A2 - N N .=

Input 4883 Poot 31 Ceee A .. NN . _ENER. .S

[neut %884 Pori BT R - e
: .

Input H885 Por: (I : -

Output file contants.

IC# 1 (SN
ICH® 1 (8N
IC# 4 (SN

7486 PIN 2 6 SR KR SRR E NS
7435) PN #4: .-EMEE 3 1TEmR . 1. 1.1.
74845 21N 3 4 R Ao s s Sesm—

Figure D1C. waveform utput Image for ADDER.CHT

Y 48
«

',‘r*. v 4

8 7t

atotaloatie ala"at e’

AR LRI RIORIOT

o' AT g7 .fnv QX-A. -......». Yot ..v . .4..-.., K .b e, S .-...n o) .v-- LY ® [N R) ‘VAM v
b %

DAL A B i A, S L T N A T A A A O SRS A A

190" 3€DHd I0J wexderq oIreBWaydS "TIQ 8In3T 4

OO¥INS ¢
LOIVINS =7 10 - 307D
no_wmzm T 40T

AG+

A
A 4

a3sn 10N

7 TS ot rse

O €0 20

T

»

-
SRS SN

!

PR

'\."\."-.' '."'.‘.-.'

-

.o
\'-.'\

o

SRR CNSN

Rkt

. el s

+, -

o SN
T

! \,\

T

R

N

e

ol

B

D-8
\q'-'n* \.
PR A I T O W T
AW }k ‘;C_u aﬁs’ RGN ANN "“:' T 3 ; : :f‘d; ARG s,
‘ alk m B o an Al AAm Y

Ll

— = - = -
——= 7400 =
[——] -

e— el 1 =
- -
—_ | | -

Figure

D12. Graphic Circuit

Desivn
5 Circuat

Ret>riev
Cipeuit

1¢E
- LOGSINM

LT 1Y

E;!ik&‘.

CP x=3 ys

Image for BRC3S.CKT

N EREA

LA, A AN
£ & 3 5 e

~

‘u -,\".

Lew e e
S‘»'-‘n")
P Y N WU

S 4

N

P

‘-\ﬂ.

v‘.‘-".‘-" y N 2 _w_
) p) ° ’\’ \-'\-‘-‘-’

-

LT YL S SR §

P

S"y'". 2t

I3

LA

£ AN N

.{A'

Output file contents:

Ciock '919191081019191913192
1C #4882 (SNBT4187) PIN %@3 11130118041100811081108
1C NUMZ (SHUE?Q1IdY?) PYIN NS iYU1l111lWdEEN1lll]lveeyll
1C %962 <(SN@7T41387> PIN 482 :000888112:11111099009
1C #0081 (SMB87488) PINM M86 : P8908901 1989800118088

Figure D13. Binary Cutput for BRC3S.CKT

Input data streams.

No input streams supplied.

Output file contents:

Clock ;-I_LI_LI_I..I_I_I_I
. A=

(SNB74187) PIN #83 L O
('c- ?.EE% (oug-uoo'n N nac __ghEEm ___GREm ___UN
IC zee3 (SN@74187) PIN RE3 -—-—-—-= —

[C 4881 (SN8B?488) PIN 886

Figure D14. Waveform Cutput for BRC3S.CRT

R RN, . .
3{3’;.'&1 A'J;;‘\ SO ASGENC EA ATN -

T N ."_.. '.‘?:} - _..(:'

c'.-(.'- ‘i

V3@

Y
5

S
x

y

r A NS STy
WY YRV

L4585 %S

N

-y
.}.

20

I ' 5 . ,_.____LI ' l o

AT T Th T

Loy

I3 3 5 P . nr___\.
= ‘ ’—1‘2__1_}'__"1: >0

Ic¥ 1s5N7420 —
20 8N7420
3: SN7420
4sSN7420
S5:SN7404
0sSN7404

3

Ay

n
L4
v

2
A4

N

.

.

W

2%
A, NN

.

2

.

o+

s

*

RN

¢

.,,
J"Iw.

...
[)
et e '
r
A

[N
v

-
™

ENABLE

I1

Figure D15. Scrematic Diagram for DECCDER.CKT b

Q
1
—
[~
'\'l‘l .
)
CYANE

e
2,

J('I

~ . T ‘.- L .
l\f fﬁf T N r L ‘g\f\. N3 (f NN f*u*\'af-' AN \.\{\-_J . .5 c. {] z\.x.\ \J\r_J\ SN SGIOR

L \ SLud] “ain Me
- =,
~ - . . e mmmmma
o ——— B
T ; . it -
ok 1 14 & WEYIT]
- = = &
. | —— I ['
: | N
! [} . | ll
; ! : . -, Retrzey
| ! e A .':{1 { Citeu t
— — = L I — 1
T .m_ - = e T e S
O . L. LI oo afEe et Sides A meeee-
R VI | S — .S -2
-—= "jf_ S w3 - i-—w g L De! CKI
i - - G
H —~ - EN . | - ,’ - —c-.- -
P Tm—— . o« = - Save Ch
; L T T et S L
S B Lo qod L e
S e P'___g ’ il - :__;’3"-1-- = fv i
N--*: ¥3ze E_ ‘! ii ; ‘~.,: 7429 : IB’: ._.‘_: 7404 :) LOGSINM
. - MR ‘L m -
h p——— —_— _— i ceece—a
: . 2 - - 4 - e : 6 : "
s . ~ e e L m Hels
) T
SR e |
..... = EMIT

Figure D16. Graphic Circuit Image for DECODER.CKT X
-
.
.
‘
14:11121111100C00000111111110000000011111111 s
15:01 -
16:00110011001100110011001:0011001100110011 -
17:00001.1100001111000011110000111100001111 -
Figure D17. Inputs for DECCDER.CKT *
-~
W
~
D-11 >
f
k&l&t&%‘c&t&tf; L R e et O Tt o, P N e Tt

P

Yy

AR

BB 2 _»_ e

chc A

S B e

-
A

N
t

N\

A‘ ﬁ -
s e e ;

°

n'n/.','
4 "t

) {',..J’fl,'

o/
L)

A

o

5444

s, 0548 g !

"

‘io s

TN

Aol |

.-

(SN e
2 e la XaX£Xtl
BBV

804
885
06
887

¢
{
4
Y

(

NPT AUNAN

Output fi1ie

(]
(SN
(SN
(SN

SN
SM
SN
SH

t data files:

MRS 11111111600068001111111100008600911111112
SIS S Nt :9191210191818101510181319101819182818181
Wt Heqee §01 19091 10091100110011001190119012809129€10
A RN 30001 111500811 110688.1..86e86iil.68001111

" " —— ——— - - - - - - " - - - - -~ -

contents!:
7464Y PIN #12 . {aaqaaaAQaaakantant apaafaaantlnng AnnRLan
74@4) PIN #1808 :810000080090800900100080300083684880413006aG
7484) PIN % 8 : 8018000080 QBRARAAA1 20AAARARCANRARA 2RAAA
7464) PIN 4 2 ' 6681086000G0C80000001000006GREGERCEGEEIsEEs
7484) PIN % 4 :3069136080808006006301 906E823@EEE428E0 200
7484) PIM 8 & + 299991 202CA800090090001 2000000090802090]1 A
7484) PIN W12 :95000810600000000000891300006000E30000810
7484) PIN M1 : 920PS0RL2Re2R2PRRRR2001 2022202222222 ALL

Figure D18. Binary Output for DECODER.CKT

Input data streams:

Input ¥BB4

wnaac

L2 v2-]

Input

Input 8886
Input #0887

Port EN ... L]
Pgrt 4 SRR AR NENRERRERARS
Port 12 e PR __ T __N__IR.__NE_ _SS__NE__=In
Port I3 e ER____ R __FER_.. W ___UE—s

Cutput filc

IC %
IC ¥
Ic 8
IC#
IC#4
P ICt

IcCt

ccooohorontnen N

(SN
(SN

(441

(SN
(SN
(SN
(SN
(SN

cantcnts:

7484) PIN 212 n a
7484) PIN BiB L L i
L . | B
L I

7484) PIM 8 8 om
7484) PIN 8 2 e
7484) PIN 2 4 toee B - e
74684) PIN & 6 : v --L -
7484) PIN R12 e n .
7484) PIN 818 e B s R —— .

Figure D13. Waveform Qutput for DECODER.CKT

"

- ‘; ,';.. ..": ‘:. -

¢

.
e

P

L A]

W

T A AL
2 }ﬁfh » > Aol \\' N ~

Appendix E:

AT A

LOGSIM248 Manual for Independent Simmulation

175

L T e Tt

L -

o S
L A L

N
.
o

5% % Yy

A% 5 s

Ill"'-.“rh‘l"l"".)..‘,"...'.. -.

.

. -
.

@ Hnh

' ald gfe o0 ke LAY SV 3o

» LOGSIM248 MANUAL FOR INDEPENDENT SIMULATION

» E.l Overview

LOGSIM248 is a new implementation of LOGSIM, version
b 5.5, which is a digital design logic simulation program
developed by students of the Air Force Institute of

Technology. All source code for this new implementation is

written in the C programming language and developed using the
Borland International TURBO C Integrated Development
Environment.

LOGSIM248 is used to simulate sequential or combinational
digital circuits comprised of TTL (Transistor to Transistor
Logic) Integrated Circuit (IC) packages. Presently, the IC
library within LOGSIM248 consists of 32 separate packages
from the 7200 family of integrated circuits.

This simulation program may be run as an independent
simulator or as an integral part of the larger digital design
tool, IDIET (Integrated Dlgital Engineering Tool).

Presently, no wuser interface is built into LOGSIM248 to
enable interactive circuit entry. All data used by the
simulator is supplied by four ASCII files. Three of these
files are required, while the fourth is optional. LOGSIM248
results are written to two additional ASCII files and are

available for user analysis.

‘.:.:. 'x.’_\. R RIOAT SRR —--.;.__'- A R P TN)\..'.___,‘..,\.." o~ J,_.\ ‘*\ Jh_-_-",-\' _ .

A N N LN N

[y
a

The four input files must be available to LOGSIM248 prior
to invocation of the simulator for proper independent
execution. Some sort of file editor capable of creating
ASCII files will be required by the user for creation of
these files. Word processors which can convert formatted
files to ASCII will work perfectly, provided no control
characters (characters used for printer manipulation) are
imbedded in the converted files,

The following sections of this manual present LOGSIM248
operation, materials required to run LOGSIM248, the
input/output data file interface, file format and
construction, and possible error conditions resulting from
incorrect operation. Examples are presented as needed and
are based on those test cases used for LOGSIM248 simulator

development.

E.2 What Is LOGSIM248?

LOGSIM248 is a digital logic simulator used to simulate
digital circuit designs which use TTL IC packages as major
components. As the term "logic" implies, this simulation
tool performs no timing simulation -- it is primarily
designed to confirm expected output and circuit design by

supplying the user with binary output streams based solely

upon input data. Data is input in one or more binary streams

corresponding to user defined input ports. This data is then

N,

b S0 T T I R Y .
e e e LA
{‘\' 'r"v"r"" -~

~ Aty ay e
PR

X

s

.
."r' ld

h el
[P VLN

»
s

TRSASNAS
2 _4

"y %
.
L

VD

° .,
.

Y B ATV

P X

)
v oY

2ok
’.’

1}
'

P -
. Y Al

.
.
o

" L 3 .
['-' .n' v

h*
‘G 4

. F R s
. LN
R ¥ YNV

b

operated upon one bit (or set of bits for multiple inputs) at
a time to produce output in the form of binary or waveform
data streams.

All input data is supplied through the input file

interface, and all output presented through similar output
files. Under ideal conditions, these input files are created
through the integrated digital design tool, IDIET. This tool
combines a graphic user interface, and a connectivity
checker, as well as, LOGSIM248. The graphic interface allows
the user to draw the circuit on a computer monitor screen

using both menu and mouse directives, after which the expert

*

system may be invoked to check connections prior to

.
2 4

simulation. Further explanation of this integrated design

N
.

tool is beyond the scope of this manual. For a more detailed
explanation of the functions and capabilities of IDIET, refer
to "A Graphic User Interface for Digital Circuit Design:
User's Manual", by Charles Adams.

It is not necessary to own an executable version of all
components of IDIET to simulate circuits with LOGSIM248. All
that is required is knowledge of the LOGSIM248 file
interface, a text editor, and an executable version of the

simulation program.

E.3 Materials Required

LOGSIM248 runs on all IBM PC, XT, and AT compatibles

utilizing the MS/DOS operating system, therefore, it is

necessary for the user to have one of these of computers at

his disposal. Of course, an executable version of LOGSIM248
is also required. This executable version may be obtained

upon request by writing to:

Air Force Institute of Technology

School of Engineering

Department of Engineering and Computer Science
Wright-Patterson AFB, Ohio 45433

Py e P
R

. >

and enclosing one 5 1/4 inch diskette.

LOGSIM248 may be invoked from either a floppy disk or
hard disk provided all input files are located within the
same directory as the executable version of the simulator.
Upon completion of the simulation, all output files will also
be located in this directory, so it is important to insure
plenty of storage room for this purpose.

Finally, the user will require the use of a text editor
or word processor capable of producing ASCII files. This
capability is required to produce the input files used during
LOGSIM248 execution. All files produced must be pure ASCII
files with no extraneous control characters imbedded in the
text. If word processors are used they must be able to

conform to this requirement or LOGSIM248 will not function

properly.
E-4
o
A
iyt
N,
- . e - K SR N T R U S A N S ey N AL P T A S N B
'f‘d':. “: :f:q'\ 'V.:'\q ¥ \(\.‘\.\I‘.“_ v . \ » en . -:‘ 0 'h\,' RN ‘-_."_- ..\.“-\'.:‘_.-J. AP AERE AN _-\‘,. >
A . $) 'y b D ' 0 - » B B A " >, . L

g0 I PR T O

E.4 LOGSIM248 File Interface

As mentioned above, LOGSIM248 uses four files as input.
The data from these files is used to; (1) construct the
circuit, (2) identify the output monitor points, (3) provide
input data to the simulator, and (4) construct the files
containing output data. All output data is contained in two
separate files. One of these contains the output displayed
in binary streams (ones and zeros), while the other displays
each output stream graphically, in square-wave form. All
input and output data is obtained from ASCII files containing
no imbedded control characters or executable machine code.
These files can be viewed or created through the use of any
text editor or word processor with ASCII file production
capability. When creating these files it is imperative that
all data is entered as presented in the following sections.
Any errors in these input files will either cause the
simulator to produce erroneous results or cause the program
to abort,

LOGSIM248 ‘nput/output file information is presented in
Table E~-1. This table shows the file name, file type (input
or output), file entry format (delimited by []), and examples
of file entries. File format entry codes are shown in Table

E-2.

IR UL LRI . e AR S R IR Y LI T g e T T W
g) ‘i. ‘e - BN N "\’.’l\"-u" I'v- LSy -"..'-‘\‘,-".' """-‘. N “'- f‘"’

noat e

b T e T T S
’ 5 'n: 511..

R
v
AT

’ ¢
J"rt‘ PADR

..
AN
L d

u‘.‘n"

hegs
SR
X

e e
»

Y

'-:.':‘.w
oL Y

b
.

P

". 7

A

» l‘l'.'l‘l‘n

.
i.
s

,‘_ 3 J (~. *p".‘ _: “v .:
', PR A
AL FOTHYEE RN

« Y 4y
L

LAAA

O -1 IR
“ ‘l .’ & & :
SR AR

2

2 Ay r e
P4 2L
z&JO j%’

AR ARR

B
5
=

D
L4

IP?(:‘

E.4.1 Circuit Configuration Input File - TEMP.CKT

The first of the input files, and perhaps most important,
is TEMP.CKT. This file contains all input information
required to build the circuit. All IC's and connections
between these IC's are specified within this file.
Additionally, connections between user defined input ports,
power, ground, and clock must be contained in this file.

All entries to TEMP.CKT are composed of two fields
separated by a full colon and followed by a new-line
character (carriage return). Each of the two fields describe
both ends of a particular connection within the circuit being
designed. Each field consists of four sub-fields as pictured
in Table E-1.

The first sub-field contains a capital letter immediately
followed by a three digit number. This four character field
describes where that end of the connection comes from. If
the letter used is a 'T' then that end of the connection
originated at a TTL IC package. The letter 'I' means an
input, 'C' is the clock, 'P' is power, and 'G' is ground.

The three digit number identifies the particular input port
or TTL IC being referenced by this sub-field. For (P)ower,
(G)round, and (C)lock this three digit number is
inconsequential and may be anything. The number need not
consist of three digits, but all position in the field must

be filled with either a digit or a space. Padding with zeros

v e N s L™

TP W oy T e T T A e T T e N T T e e . . -
R A NS e T e e e & 4 B L R N N ’(\r A RN

A VR A

YN

~ang e
L A
A

‘ __
P A o A

35 5%%
NN

;e
Y
=

»

et e

A X
a0

Py

IR
A

e v
/~f.’n .:..f. v

)

VX
..& Ay

e
»
o

0

-

va'y's
.':il ’

"X

l"l!
l.'l .)

L]

Y _. .l. ‘. "‘ 5

LN
R

v,

NPT,

.' LI Iy g 3%
AN
DT]

» ~ &
LA
v J

Caf
-
2

.l
l../
S
»_E

.

P

Table E~t. Data File Formats
{see Table E-2. for forsat codes)

tesp.ckt -- circuit input file
- forsat [dnnnttttttpp cossent:dnnnttttttpp comssentl
- example:
power +3Vdc 17001 740014 power Vcc
teap.dis -- outgut sonitor file
- format: [dnnnttttttpp comsent:]
- exangles:)
7001 740003 output Q:n 31 H
1003 input #3 :
tenp.in - input data streas file
- forsat: [nmnziidiiiiiii.,
- exasple:
001:10503050101010150101010101010
teap.out - binary output file
- forsat: {IC #nnn (SNnnnnn) PIN #nn 1000...)
{Input nnn 1000...]
(Clock 1000...]
{Power $000...}
(6round £000...]
- exalgles:
IC & 1 (SN 7400) FIN H13 10110111001111000011001 1
Input 003 $10015000011100110001101
Clock 101010101010101010101010
Power I
bround 100000000000000000000000
tesp.udv - wavefors output file
~ input streas description
foraat: [Input #nnn Port cc tiii...]
- output streas description
foraat: (IC #nnn (SNnnnnn) FIN d#nn LT |
{Input nnn teww. ..)
[Clock AN, .,)
(Power TR
{6round H T

- exasple:

lngut file contents:
nput #001 Port Al ;--ALER_ER _EN __mER .8

Output data streass:
IC & 1 (SN 7400) PIN #13 (- UL ... -
IC & {3 (SN74181) FIN #13 e g

Input 003 (AL _SR..
Clock -AARASARRRRR
Power + NP —
6round H

» -'-'- * o .~(

Table £-2. File Foraat Codes

codes: d = connector descriptor (I character)

T:TILIC
1: input port
P : power (+3Vdc)
6 : ground (0Vdc)
C: clock

n = I€ or input nusber (3 digits)

t = IC type {6 digits)
optional for input, power, ground, clock

p = pin nusber (2 digits)

optional for input, power, ground, clock
cossent = optional 20 character cosaent field
i ingut value, logical value 1 or 0
o = output value, binary 1o?ical value 1 or 0
w = output value, wavefors fogical valye | = ®
logical value 0 =

E-7

RBEYREE)

3

&
»

N NN

e
. l‘t.

N

'_-':.‘.-'_."-1"-.-.. R

is a good practice for insuring proper field width. When
padding, it is good practice to left justify the number; ex.
TOBl, 1 2, GOOO, etc..

The second sub-field consists of a six digit number
describing the type of TTL IC being used for this
connection. Because some IC type numbers are only four or
five digits long (i.e., 74086, 74167) the same rules of
padding hold here as above. It is important here to insure
that the number entered is indeed in the IC library used by
the simulator. A list of the 32 IC's presently contained in
the library is provided as Annex A to this manual. If the
end of the connection in question is connected to the clock,
power, or ground, these six positions may be left blank or
filled with any character.

Following the IC type indicator is a two digit number
representing the particular pin on the IC being used for this
connection. The same padding rules can be used here as
above. These two positions may also be left blank in the
case of power, ground, or clock. I1f the number entered here
exceeds the number of pins normally found on IC packages of
the type specified in the IC type sub-field, the simulator
will not perform properly.

The next 20 positions of each field are not used by the
simulator and ray be used for comments by the designer.
These positions have been included for future use or circuit

specific details not contained in the other sub-fields.

. A . v et " :._ > .‘;\.‘_;.: .'_\‘. -_-‘\"*& \-’\ PR IR T T e G S N P

- 2™ AT At et et
LRI It I SR WA A Wi, T A T e P I A I R R A AU SO RCA EN AAOAER0ST

p)

Y Lt et tat
\":."n".- M -',n"

An example of this file is contained in Annex B of this

manual. It should be noted that all connections to the power
(Vcc) and ground (GND) pins are listed in this example file.
Although these are not required by the simulator (the
simulator assumes power and ground connections for Vcc and

GND pins only) it is good practice to include them.

E.4.2 Output Specification File - TEMP.DIS

In order to view expected output, it is necessary to
specify those places in the circuit where this output will
originate. Tlhiese output monitor points are specified in the
file TEMP.DIS. All entries in this file consist of one field
terminate with a full colon. Each entry in this file is
exactly like one field of the entries in TEMP.CKT. Only the
left field is used and all sub-fields are the same as those
described in the previous section. An example of this file

is also contained in Annex B.

E.4.3 1Input Data File - TEMP.IN

TEMP.IN contains all input data from each input port
required for proper circuit simulation. Although some
circuit designs may take all input data from the power
supply, clock, or ground (electrical low), this file still

must exist. If no input ports have been specific in the

‘b..':"-"\ LRI T :_":.\;'.:".}‘-"\.

L, ,...'..'h. AR B LU K
PN AES A e e e e e e e e e e e e

PR WY

o 4 4
— -

PR
.
b

RO
.-\55'\\‘-5.

"

e, R
‘ W et .
[l"',‘l‘ N .t

’

., e
>) [N S
i b

circuit then no data need be present in this file. An empty

file in this circumstance is needed for proper functioning of
the circuit.

The entries in this file are comprised of two fields
separate by a full colon. The first field contains a three
digit number specifying an input port for the data stream
which follows in the second field. The input port number
must be left justified in the three digit field and padded
with zeros. The input data stream for this input port must
immediately follow the colon and may be as long as 89
characters. This data field may only contain zeros and ones
which represent electrical high and low. Any other
characters will not be correctly interpreted by the simulator
and will produce erroneous results. An example of this file

is also contained in Annex B.

E.4.4 Input Port Label File - TEMP.IND

This file contains the labels used to identify input
ports. These labels are two character identifiers which will
be used in the output waveform file. This is an entirely
optional file. The simulator tests for the presence of this
file and uses it only if it exists. However, if it does
exist it must have correct data in it. The absence of data

or an incorrect number of input port labels may cause

simulation run time errors.

.
IO

Fhuy AR

- f‘.fc

$5 7 A
n"i{'i Y

)
-ﬁl.lf.a‘,

(I

Entries in this file consist of two characters followed
by any amount of information (up to 88 characters total) and
a new-line character (carriage return). Only the first two
characters of the line are read by the simulator. The rest
of the line may be used for any purpose the designer wishes.
The example in Annex B was created by the integrated digital
design tool, IDIET, and contains additional information
required by the graphic user interface component of that

tool. This infocrmation is not mandatory.

These are the only files required for effective operation

of LOGSIM248. A complete example consisting of a schematic
circuit diagram, the three input files, and the two output

files is contained in Annex B.

E.5 Invoking the Simulator

All that is required to invoke the simulator is a copy of
the executable file, logsim.exe. Those input files described
above should be created and placed in the same directory as
logsim.exe. If these files are not in the same directory,
the simulator will not be able to find them and the output
files will contain an error message alerting the user.

At the computer prompt the user need only type:

A>logsim

Y T e et e AT ATy s
J". ' -'n’ \d'\-"\’\-

> LI T LIS] - .
)-_‘.r L Lo N

¥
O

TP
4

NASANA RN

followed by a carriage return. LOGSIM248 will simulate the
circuit specified by the input files and return the system
prompt when finished. After the prompt has reappeared on the
screen, the output files, TEMP.OUT and TEMP.WAV, are

available for viewing.

E.6 Summary

LOGSIM248, a digital logic simulator for simulating
digital circuits comprised of TTL IC packages, was designed
for ideal performance when incorporated as a component of the
integrated digital design tool, IDIET. However, the
simulator may still be utilized in the absence of this tool.
This short manual has explained the operation and creation of
interface data files for this simulator and presents examples
in the following Annexes. All IC packages contained in Annex
A may be used to construct a myriad of sequential and
combinational digital circuits. These circuits can be
efficiently simulated using this manual, a test editor, and a

copy of the executable version of LOGSIM248,

.

.."l

"Ei:?.-t-

AN

B4
SAS%S

.

AR AR ARY
«

“»

>
G i e b

;*.

e
oo

o
AnSn

-
« n

N n".‘-.‘ b

SRNENA
l'l .

-

EAEY
Y

LIERIRIRR
SO

EX
: &

L N s
18 4 a0
Sl ALLL

°r

~
P&

W
..d' PR

-~ @ P
A
.

q
| 4
4 o

1
[

AR

»
L)

v

R

‘
v

L ¢

WA A '.. ny \.}V‘}_‘;’.}}.‘;-..'.-}-.w . - .‘.:--.:.._-.g o ; '("(-'J‘"J,':-f u' AT "1'1 P g :f_‘.-\r..'.r‘,-ﬂt_'.f_:,f{.ﬂ W, -".‘,- -":'-‘-'
) '» . o 2 ¥ ! » . 5 . .

o | PSS Y S Yy

e

“ ‘!"'9 (i '. ."‘l.

W
'. s'- l\ (O] 4

TURTUT
ANNEX A:
- «% 7,-\.*'

LOGSIM248 TTL IC Library

R L RN S L P RO S
J‘ -*
A0l (o " A N

I WL M

B
t

“

J'

\

o~
AN
Mo. (%

SR ~
iW\f‘.f¢F\-f

= R AT

LN

£ e € v =
r
X " ety

x v -"-,-4 -

@ L7

s

s

a'??

AR

P IRAR v % '-4‘-.,1‘. e

Y

?’I

1

L R

Y

ersle

5 ® ?j’:.'

'y

g

”

L™

e

7480
7402
74084
7408
7410
7428
7425
7427
7439
7442

7483
7486
7489
7493
7495
74107
74109

74116
74135
74151
74153

74157
74163
74175
74181
74183
74193
74194
74274
74279
74284
74285

74298
74378

- Quad 2-Input positive NAND Gate.
- Quad 2-Input positive NOR Gate.
- Hex Inverters.

- Quad 2-Input positive AND Gate.

- Triple 3-Input positive NAND Gate.

- Dual 4-Input positive NAND Gate.

-~ Dual 4-Input positive NOR Gate with strobe.
- Triple 3-Input positive NOR Gate.

- Single 8-Input positive NAND Gate,

- Single BCD to DECIMAL (4 line to 18 line

Decoder).

- Single 4-Bit Binary Full adder with fast carry.
- Quad 2-Input Exclusive-OR Gate.

- Single 64-Bit Read/Write Memory.

- Single 4-Bit binary counter,

- Single 4-Bit sShift Register.
- Dual J-K Flip Flop with clear.

- Dual J-K positive edge-triggered Flip Flop with

preset and clear.

- Dual 4-Bit Latches.
- Quad Exclusive-OR/NOR Gates,

- Single 1-0f-8 Data Selector/multiplexer.

- Dual 4-Line to l-Line Data

Selector/multiplexer.

- Quad 2 to l-Line Data Sel/mult (Non~Inverted

Data Outputs).

- Synchronous 4-Bit Counter (Binary, synchronous

clear).

- Quad D-Type Flip Flop.

- Arithmetic Logic Units/Function Generators.

- Dual Carry Save Full Adders.

- Synchronous Up/Down Dual Clock Counter (Binary

with clear).

- Single 4-Bit Bidirectional Universal sShift

Register.

- Single 4-Bit by 4-Bit Binary Multiplier.
- Quad (Inv)S - (Inv)R Latch.
- Single 4-Bit by 4-Bit Parallel Binary

Multiplier used with '285"',

- Single 4-Bit by 4-Bit Parallel Binary

multiplier used with '284°'.

~ Quad 2-Input Multiplexer with storage.

- Hex D-Type Flip Flop.

Figure E-1. LOGSIM248 TTL IC Library

1@ By

AN P N WS It R
. W, It

E-A-1

R R A A S L Vol Ol O U L P UL

RJ

e \ IR O

- o 2 -

aias Loy L CAnrnrs: L LAddasimns [v aaaceof irrwars AL aanataol INICNGHE 3 Aariadititrl) ardailey ol CODNNINCLS } i

e w e] T VYT T LAY Y M T AANY N Y Yy T Y A LY, - [t A b &

e

l\ l\~l_‘\

A

NN

RN

.

TS)

w

-
hY
'

AT NN A N

e
-

ANNEX B: Example Input/Output File Structure

Pt bt Pt et et (nh e Pt P ok bd P =3 =] 0] 3 =3 =3 =3 T PO PO

J'v‘l{-

@ POWER 8 A AAAEARE RS RS R NN 3 ITEIINSAZEE AR SR AR AR RS
& POWER 0 AR EREER SRR R LR BN 2 741014 nrnntr bbb hhadd
8 POWER 0 kS22 SRS SRR RS R R PN 1 T4GG L4 *rrrrtrathbbhbbhhbhtd
1 7400 7 QENtRRARNRANARNNN .G GGROUND @rrvadtaadbatrbhhthind
2 74168 7 SArkkkb bkttt teG GGROUND Br*dravtaatdanrtanhhtd
3 7486 7 'SAAAEAS AR AR S LS NV BGROUND @t rtatdatdtadsdttdtsn
1 7400 3 AR AAEEEREER RS R BN 2 ZSU BPALAS AR AR S RAR R R SRR RS
1 7480 6 EEEEARE SR SRS NY, 2 741013t v hnbnbtha bbb htd
3 7486 3 Qhkhhkhhkkhhhhhdta,] 2 7410 Srterentwr b bt b kbbb hhN
1 74001] 1Q***d*athardhasdh T I T486 4Arrhathnrrbtahbbdhband
1 il @ ISR AR SRR RS BN 1 7400 lr*srrrarnt et rarthhn
1 il @ ttttt*t*tttttt*t:T 1 7400 4 *astnahw bt atthnn
1 il @ kS22 2222 R RS R BNV 3 7486 Strhkhrrhhrhhbbbbbbtd
2 i2 @ RS AR E AR AR RS A RS BN 1 T4 2%kt atdttrt bbbt hhd
2 i2 0 1S etk hhth . T 1 YT DERAE AR AR AR R R SRR S
3 i3 8 lo*rhkth bk Attt] 1 T4QBl2** ettt h bk hbhbkn
3 i3 0 SWARZ R SRR ERR R BY 1 7400 Sthkrartrrak bttt hhbhhk
4 iq4 @ 18* kst ktaa bk, T 3 T486 L**st bkt hhhtNtAannt
S iS @ IR ERZE RS R RS BN\ 3 T486 2urrhtrahhhahhraARhtn
6 i6 @ I LAAEASE RS R RESE NY 2 T410 4rrrrrtnrrhrhrbhhbhhs
7 i7 @ PARAEZASR SRS ERE R A NYY 2 T410 I3rrrarrrak A nrh ARt
8 i8 @ 22* Ak h RN R AR ERRER] 2 7418 1**rrrrantrrhbhibbhas
Figure E-3., Circuit Configuration Input File - TEMP.CKT

T 2 741012 attnahrnh b hh Rt

T 2 7410 CF antanhh bbb b AN RN,

T 3 7486 Crrrthanhhhhhhh bbb d,

I 2 (200 N a Akt kbbb,

Figure E-4.

Output Monitor File - TEMP.DIS

Figure E-5.

[ST ST ST ST TS ST
[T ST ST ST ST ST
O~ NI
80 00 98 40 80 65 00 O
[aadand ol o -~ 1~ 1~ 1]
[l ot ol 1 1 1~ Lo
[g~ L~ 1~ Ll -~]
(el et~ "1~ 1 1~ Lol ol
[~ Ll ad -~ T -~ 1~
S D R = D
R
(a1 -1~ L Ll od o
S~ RE e
[Tt~ Tt -1~ T
DR~ R-E
Tl -1~ 1d - -1l o
L~ Td ol ad - ~ 2~
[T ~Tod T - ~ Lo
LS~ T o -~
[L-1-~1- -1~ Lol ol ond ol
[l o~ T <1 -1~
[t gl -~ 111 Lo
[dand -~ T -~ Y-~ T -~
RN ER -~

Input Data File - TEMP.IN

Input data files:

il = @81l Khkearrinntcarareeer:31010101010101010101
i2 = @62 Aedkhabbar bt raeter:00110011001100]110011
i3 = @83 Krakhanaarri et en:00001111000011110000
i4 = 0064 AhksakkAraaR bt arr 3000P00011111111000880
iS5 = 005 AEaansbrbnrnaniannen: 131010101010101610148
i6 = 066 kbt raaR b AR ARt art:]1]10011006110011001169
i7 = @87 ARwAnbEAa kbRt an:))]110000111100081]111
i8 = @08 AErAAktAb ARt ataer:]111111110000000081111

Figure E-6. Input Port Label File - TEMP.IND
E-B-1
AN "\, ('("'I s A A \:\-‘r'z RN S N M A N A RN -

i’ d'e dte Ate J N 4 L’

» Yy v

. v
A

o 0
-

LA 4O S o SN
. -
a "y Y

8

. . 0. .‘. ',".".‘ ."

. '.‘:‘N‘-'."i \

?V'

LN
R
o 8 _a_V

=
@

. L S
."'"'y'/': e

i ":.'.»

AN

. . .
B ‘.,..'-'.'.‘.‘./.

. v o
AR AR

R

.

..' A . P

OQutput file contents:
IC # 2 (SN 7410; PIN #12 :00010101111111110001
IC $# 2 (SN 7410) PIN # 6 :#1111111161111118111
IC # 3 (SN 7486) PIN # 6 :1010106110101068110189
Input # 2 :90110011601100110011
Figure E-7. Binary Quput File - TEMP.OUT
Input cata estreams:
Inpurt mOC L Fase 1 c~S_E_A_E_A_ B . R_ 208
In:-_«‘_ ” : ::f: :: 1—~SE__ma.__ea__sa__s«
Imoun #8007 Roew 0 T {--——-Geas__.__sses....
ImoLe mivlag Eare 4 [, SamSsSess.. .. _
Tene mOOE Emrs T A_A_ B . S.A S . 8_A. 8
Ir:v_-—_ g.r.'.- F’:-"': 16 :-I__.-__I-__..-_.L_
:-:._,._ #. ::,-: 17 :.III-_--..II-_-_II..
:.-:._.—_ “.:.. = :,:?--_ 18 : aRsEEnRes. . _ . __ anaa
Guzoun +:le =2ntents:
J - 13N Q10 SIN 8D t-—-A_A_SeAssssss___a
2/ (SN TI1o BEIN #& & ;-fESEsSEN_sseuan_ses
I': o T -.SI-J '7.'.5:| :I[\ #* 5 :I-LI-_I.-I-I_-II-L
IF\:-_J: [: :__-I_-Il__ll--ll__--
Figure E-8. Waveform Output File - TEMP.CKT
E-B-2
O O O N B B R B N N S PN R B NI NI

o' N
g

b

rrew
s N Ty e

«C e

l- '-“r. *
4

% %

o l"-’ .

P I A

\.‘
. »

» 3

Y

Ay
N

.\}*

I'.‘ ‘\
@

I TR IR

o .'.l .',‘.'. .'A/", » .'. l'n .'- .‘. .' .‘.'. "
AN N"V':"-'l'.--: A

-,.. A

PR
[A

1
‘I'I‘l‘ ‘. A'

o

"l{', l/ ""'.‘ ’{ ?
P)

g

. B & Y

h Y
A,

VITA

Captain Wayne C. DeLoria was born on 27 January 1954 in
Chicopee, Massachusetts. He graduated from high school in
1972 and enlisted into the U.S. Army in March 1974. He
served for six years as a Non-Morse Communications Analyst
completing two overseas assignments. After attaining the
rank of Sergeant, Captain DeLoria was accepted to Officer
Candidate School from which he graduated on 29 February
19808. He then served as a Project Officer and Headquarters
Company Commander for the Electronic Material Readiness
Activity, Vint Hill Farm Station, Virginia. 1In 1984 he
entered James Madison University through the full time Degree
Completion Program. After graduating in December 1986 with a
Bachelor of Science Degree in Computer Science, Captain
DeLoria went on to attend The Air Force Institute of

Technology, School of Engineering.

Permanent address : 36 Hillside Avenue

Chicopee, Massachusetts 010286

193

IOV 78 ™ 7e oS T P e et NN R S N SN N N St N O N e L N T L e e
A G A A A G e A R S RS B "-s"--’ VU e e e

Lk

v{‘i "l l'- "- "v"\ ’."."
@AM g

¥

UNCLASSIFIED
SECURITY CLASSIFICATION OF ThiS PAGE -
w
Form Approved .
REPORT DOCUMENTATION PAGE OMB No. 0704-0188 i
1a. REPORT SECURITY CLASSIFICATION *b RESTRICTIVE MARKINGS -
UNCLASSTZIED -
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT Y
Approved for public release; -
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited. ‘:
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) -
AFIT /GCS/ING/87D-10 =
. @
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION b
(If applicable) by
School of Engineering AFIT/ENG "
o
6¢c. ADDRESS (City, State, and ZIP Code) 7b. ADORESS (City, State, and ZIP Code) 1::
Air Force Institute of Technology ”
Wright-Patterson AFB, CH 45433-6583 L/
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL [9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
QRGANIZATION (If applicable) -
8c ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS .
PROGRAM PROJECT TASK WORK UNIT .
ELEMENT NO. NO. NO ACCESSION NO -
11. TITLE (Inciude Securrty Classification) o
See Box 19 -7
v
12. PERSONAL AUTHOR(S) ®
Wayne C. Deloria, B.S., Captain, USA -
13a. TYPE QF REPORT 130 TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT -
MS Thesis FROM T0 1987 December 205 ~
16. SUPPLEMENTARY NOTATION h
o
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) -
FIELD GROUP SUB-GROUP .
12 05 Digital Simulation, Parallel Processing -
12 [0]5) -
19 ABSTRACT (Continue on reverse if necessary and :dentify by block number) -
Title: A DIGITAL LOGIC SIMULATCR WITH CINCURRENT PRCGRAMMING o
CCNSIDERATICNS (UNCLASSIFIED)
Tresis Chairman: Nathaniel J. Davis IV, Captain, PhD, LUSA o
ECE Assistant Professor of Electrical and Conmputer
Engineering
o
"\u
ﬁmoud for 2"' reln ae: mw ITR 190.1f, ::‘
’37"\ 'Y o
Sy o C T e rment :'\
Vet . e .
‘ =
®
20 OISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 3
O unciassreorunumiten BX same as gt [oTic sERS '*JCLA“TIF'ED -
22a_NAME OF RESPONSIBLE NDIVIDUAL zzo LEPHO NE(lnclude Area Code) [22¢ OFF-CE SYMBOL o
CPT Natraniel J. Davis LV) 255-35 AFIT/ENG

DO Form 1473, JUN 86

Previous aditions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

R A

.”' ',
L S

\
he
ky

PR

] <.
......

UNCLASSIFIED

Block 19. (cont.)

|

The digital logic simulator, LOGSIM248, a re~engineered
version of LOGSIM, version 5.5, has been implemented as a
component of the digital design environment, IDIET
(Integrated DIgital Engineering Tool). This new design
expands the capabilities of the older version by improving
run time performance, maintainability, and compatibility.
Written in the C programming language, LOGSIMZ248 boasts
looser coupling between functional modules while exhibiting
greater functional cohesion within these modules. As an
integral part of IDIET, the simulator overcomes difficulties
created by the complicated user interface of earlier
versions.

With greater run time performance as a goal, this new
simulator was studied and adapted to produce a concurrent
implementation. Here, several roadblocks were encountered
which essentially showed this algorithm and data structure
implementation to be difficult to "parallelize® at best. Due
to communication constraints on the host computer, data ‘
structures used to simulate circuits caused large delays due
to the requirment to disassemble and re-assemble them at the
various processing nodes. This program handicap coupled with
communication transmission delays between processors resulted
in time complexity problems.

Essentially a software engineering project, the re-
design of LOGSIM, version 5.5, was necessitated by various
shortcomings associated with the older version. The new
implementation conforms to the proposed ANSI standard for the
C programming language by utilizing only standard library
functions and source code which complies with the original
Kernighan and Ritchie model. This re- hosting has improved
system portability allowing LOGSIM248 to run on all MS/DOS
micro-computers available to the designer.

UNCLASSIFIED

'
™

-

® v,

(@ LS

s 0 o

